1
|
Kajimura Y, Dong S, Tessari A, Orlacchio A, Thoms A, Cufaro MC, Di Marco F, Amari F, Chen M, Soliman SHA, Rizzotto L, Zhang L, Sunilkumar D, Amann JM, Carbone DP, Ahmed A, Fiermonte G, Freitas MA, Lodi A, Del Boccio P, Tessarollo L, Palmieri D, Coppola V. An in vivo "turning model" reveals new RanBP9 interactions in lung macrophages. Cell Death Discov 2025; 11:171. [PMID: 40223093 PMCID: PMC11994786 DOI: 10.1038/s41420-025-02456-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 03/13/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025] Open
Abstract
The biological functions of the scaffold protein Ran Binding Protein 9 (RanBP9) remain elusive in macrophages or any other cell type where this protein is expressed together with its CTLH (C-terminal to LisH) complex partners. We have engineered a new mouse model, named RanBP9-TurnX, where RanBP9 fused to three copies of the HA tag (RanBP9-3xHA) can be turned into RanBP9-V5 tagged upon Cre-mediated recombination. We created this model to enable stringent biochemical studies at cell type specific level throughout the entire organism. Here, we have used this tool crossed with LysM-Cre transgenic mice to identify RanBP9 interactions in lung macrophages. We show that RanBP9-V5 and RanBP9-3xHA can be both co-immunoprecipitated with the known members of the CTLH complex from the same whole lung lysates. However, more than ninety percent of the proteins pulled down by RanBP9-V5 differ from those pulled-down by RanBP9-HA. The lung RanBP9-V5 associated proteome includes previously unknown interactions with macrophage-specific proteins as well as with players of the innate immune response, DNA damage response, metabolism, and mitochondrial function. This work provides the first lung specific RanBP9-associated interactome in physiological conditions and reveals that RanBP9 and the CTLH complex could be key regulators of macrophage bioenergetics and immune functions.
Collapse
Affiliation(s)
- Yasuko Kajimura
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
- Division of Hematology, Diabetes, Metabolism and Endocrinology, Yamaguchi University Hospital, Yamaguchi, Japan
| | - Shuxin Dong
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX, 78723, USA
| | - Anna Tessari
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
- Oncology Unit, AULSS 5 Polesana, Rovigo, Italy
| | - Arturo Orlacchio
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
- NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Alexandra Thoms
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
- Pelotonia Summer Fellow, Kenyon College, CAMELOT Program, Gambier, OH, USA
| | - Maria Concetta Cufaro
- Analytical Biochemistry and Proteomics Research Unit, CAST (Center for Advanced Studies and Technology), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Federica Di Marco
- Analytical Biochemistry and Proteomics Research Unit, CAST (Center for Advanced Studies and Technology), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Foued Amari
- Genetically Engineered Mouse Modeling Core, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Min Chen
- Genetically Engineered Mouse Modeling Core, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Shimaa H A Soliman
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Lara Rizzotto
- Gene Editing Shared Resource, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Liwen Zhang
- Proteomic Shared Resource, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Damu Sunilkumar
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Joseph M Amann
- Division of Medical Oncology, Ohio State Wexner Medical Center, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - David P Carbone
- Division of Medical Oncology, Ohio State Wexner Medical Center, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Amer Ahmed
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70125, Bari, Italy
| | - Giuseppe Fiermonte
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70125, Bari, Italy
| | - Mike A Freitas
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
- Proteomic Shared Resource, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Alessia Lodi
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX, 78723, USA
| | - Piero Del Boccio
- Analytical Biochemistry and Proteomics Research Unit, CAST (Center for Advanced Studies and Technology), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Lino Tessarollo
- Neural Development Section, Mouse Cancer Genetics Program, NCI/Center for Cancer Research, NIH, Frederick, MD, 21702, USA
| | - Dario Palmieri
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
- Gene Editing Shared Resource, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
2
|
Kajimura Y, Tessari A, Orlacchio A, Thoms A, Cufaro MC, Marco FD, Amari F, Chen M, Soliman SHA, Rizzotto L, Zhang L, Amann J, Carbone DP, Ahmed A, Fiermonte G, Freitas M, Lodi A, Boccio PD, Palmieri D, Coppola V. An in vivo "turning model" reveals new RanBP9 interactions in lung macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595416. [PMID: 38826292 PMCID: PMC11142189 DOI: 10.1101/2024.05.22.595416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The biological functions of the scaffold protein Ran Binding Protein 9 (RanBP9) remain elusive in macrophages or any other cell type where this protein is expressed together with its CTLH (C-terminal to LisH) complex partners. We have engineered a new mouse model, named RanBP9-TurnX, where RanBP9 fused to three copies of the HA tag (RanBP9-3xHA) can be turned into RanBP9-V5 tagged upon Cre-mediated recombination. We created this model to enable stringent biochemical studies at cell type specific level throughout the entire organism. Here, we have used this tool crossed with LysM-Cre transgenic mice to identify RanBP9 interactions in lung macrophages. We show that RanBP9-V5 and RanBP9-3xHA can be both co-immunoprecipitated with the known members of the CTLH complex from the same whole lung lysates. However, more than ninety percent of the proteins pulled down by RanBP9-V5 differ from those pulled-down by RanBP9-HA. The lung RanBP9-V5 associated proteome includes previously unknown interactions with macrophage-specific proteins as well as with players of the innate immune response, DNA damage response, metabolism, and mitochondrial function. This work provides the first lung specific RanBP9-associated interactome in physiological conditions and reveals that RanBP9 and the CTLH complex could be key regulators of macrophage bioenergetics and immune functions.
Collapse
|
3
|
Goldoost S, Zarredar H, Asadi M, Shirvaliloo M, Raeisi M. Expression and promoter methylation of mitogen-activated protein kinase 1 in tumor and marginal cells of breast cancer. Breast Dis 2023; 42:437-445. [PMID: 38143331 DOI: 10.3233/bd-230001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
AIM In the present study, we sought to explore potential differences in the expression and promoter methylation of mitogen-activated protein kinase 1 (MAPK1) between tumor and marginal cells of breast cancer lesions. METHODS A total of 50 randomly selected patients with breast cancer (BCa) undergoing needle biopsy were enrolled. Clinical specimens containing both tumor and marginal cells were collected and preserved. After DNA extraction using specific primers, MAPK1 mRNA and promoter methylation were measured with spectrophotometry at 260/280 nm absorption wavelengths. To deliver a comparative analysis, data from The Cancer Genome Atlas (TCGA) program regarding breast cancer (BRCA), were downloaded from Xena Functional Genomics Explorer and separately analyzed. The suitability of MAPK1 expression and promoter methylation as biomarkers for BCa was analyzed with receiver operating characteristic (ROC) curves. RESULTS We found a positive correlation between tumor stage and MAPK1 expression (P-value: 0.029) in BCa. Likewise, MAPK1 expression was significantly associated with lymph node metastasis (P-value: 0.018). There was a significant difference in the expression of MAPK1 mRNA between tumor and marginal cells of BCa and BRCA (P-value < 0.001). However, we did not find any statistically significant difference in MAPK1 promoter methylation between tumor and marginal cells of both BCa and BRCA. With an area under the curve (AUC) of 0.71, the diagnostic accuracy of MAPK1 expression in BCa and BRCA was validated. However, MAPK1 promoter methylation was not found to be a suitable biomarker. CONCLUSION Our findings suggest that while MAPK1 expression, might be a promising biomarker for evaluating oncogenic activity in patients suspected of BCa. We were not able to detect a prognostic/diagnostic role for MAPK1 promoter methylation.
Collapse
Affiliation(s)
- Solmaz Goldoost
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Zarredar
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Asadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Shirvaliloo
- Future Science Group, London, UK
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|