1
|
Rhyu MG, Oh JH, Kim TH, Kim JS, Rhyu YA, Hong SJ. Periodic Fluctuations in the Incidence of Gastrointestinal Cancer. Front Oncol 2021; 11:558040. [PMID: 33833981 PMCID: PMC8021916 DOI: 10.3389/fonc.2021.558040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 03/01/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose Native stem cells can be periodically replaced during short and long epigenetic intervals. Cancer-prone new stem cells might bring about periodic (non-stochastic) carcinogenic events rather than stochastic events. We investigated the epigenetic non-stochastic carcinogenesis by analyzing regular fluctuations in lifelong cancer incidence. Materials and Methods Korean National Cancer Screening Program data were collected between 2009 and 2016. Non-linear and log-linear regression models were applied to comparatively evaluate non-stochastic and stochastic increases in cancer incidence. Prediction performances of regression models were measured by calculating the coefficient of determination, R2. Results The incidence of gastric and colorectal cancers fluctuated regularly during both short (8 years) and long (20 years) intervals in the non-linear regression model and increased stochastically in the log-linear regression model. In comparison between the 20-year interval fluctuation model and the stochastic model, R2 values were higher in the 20-year interval fluctuation model of men with gastric cancer (0.975 vs. 0.956), and in the stochastic model of men with colorectal cancer (0.862 vs. 0.877) and women with gastric cancer (0.837 vs. 0.890) and colorectal cancer (0.773 vs. 0.809). Men with gastric cancer showed a high R2 value (0.973) in the 8-year interval fluctuation model as well. Conclusion Lifelong incidence of gastrointestinal cancer tended to fluctuate during short and long intervals, especially in men with gastric cancer, suggesting the influence of an epigenetic schedule.
Collapse
Affiliation(s)
- Mun-Gan Rhyu
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jung-Hwan Oh
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Tae Ho Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Joon-Sung Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Young A Rhyu
- Department of Internal Medicine, Konkuk University School of Medicine, Seoul, South Korea
| | - Seung-Jin Hong
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
2
|
Bannister S, Messina NL, Novakovic B, Curtis N. The emerging role of epigenetics in the immune response to vaccination and infection: a systematic review. Epigenetics 2020; 15:555-593. [PMID: 31914857 PMCID: PMC7574386 DOI: 10.1080/15592294.2020.1712814] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022] Open
Abstract
Extensive research has highlighted the role of infection-induced epigenetic events in the development of cancer. More recently, attention has focused on the ability of non-carcinogenic infections, as well as vaccines, to modify the human epigenome and modulate the immune response. This review explores this rapidly evolving area of investigation and outlines the many and varied ways in which vaccination and natural infection can influence the human epigenome from modulation of the innate and adaptive immune response, to biological ageing and modification of disease risk. The implications of these epigenetic changes on immune regulation and their potential application to the diagnosis and treatment of chronic infection and vaccine development are also discussed.
Collapse
Affiliation(s)
- Samantha Bannister
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia
- Infectious Diseases Unit, Royal Children’s Hospital Melbourne, Parkville, Australia
| | - Nicole L. Messina
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia
| | - Boris Novakovic
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Epigenetics Research Group, Murdoch Children’s Research Institute, Parkville, Australia
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia
- Infectious Diseases Unit, Royal Children’s Hospital Melbourne, Parkville, Australia
| |
Collapse
|
3
|
Wei K, Ma L, Zhang T. Characterization of gene promoters in pig: conservative elements, regulatory motifs and evolutionary trend. PeerJ 2019; 7:e7204. [PMID: 31275764 PMCID: PMC6598670 DOI: 10.7717/peerj.7204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/29/2019] [Indexed: 02/04/2023] Open
Abstract
It is vital to understand the conservation and evolution of gene promoter sequences in order to understand environmental adaptation. The level of promoter conservation varies greatly between housekeeping (HK) and tissue-specific (TS) genes, denoting differences in the strength of the evolutionary constraints. Here, we analyzed promoter conservation and evolution to exploit differential regulation between HK and TS genes. The analysis of conserved elements showed CpG islands, short tandem repeats and G-quadruplex sequences are highly enriched in HK promoters relative to TS promoters. In addition, the type and density of regulatory motifs in TS promoters are much higher than HK promoters, indicating that TS genes show more complex regulatory patterns than HK genes. Moreover, the evolutionary dynamics of promoters showed similar evolutionary trend to coding sequences. HK promoters suffer more stringent selective pressure in the long-term evolutionary process. HK genes tend to show increased upstream sequence conservation due to stringent selection pressures acting on the promoter regions. The specificity of TS gene expression may be due to complex regulatory motifs acting in different tissues or conditions. The results from this study can be used to deepen our understanding of adaptive evolution.
Collapse
Affiliation(s)
- Kai Wei
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China.,Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising, Byern, Germany
| | - Lei Ma
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Tingting Zhang
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
4
|
Oh JH, Rhyu MG, Kim SI, Yun MR, Shin JH, Hong SJ. Gastric Mucosal Atrophy Impedes Housekeeping Gene Methylation in Gastric Cancer Patients. Cancer Res Treat 2018; 51:267-279. [PMID: 29747491 PMCID: PMC6334004 DOI: 10.4143/crt.2018.085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/27/2018] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Helicobacter pylori infection induces phenotype-stabilizing methylation and promotes gastric mucosal atrophy that can inhibit CpG-island methylation. Relationship between the progression of gastric mucosal atrophy and the initiation of CpG-island methylation was analyzed to delineate epigenetic period for neoplastic transformation. Materials and Methods Normal-appearing gastric mucosa was biopsied from 110 H. pylori-positive controls, 95 H. pylori-negative controls, 99 gastric cancer patients, and 118 gastric dysplasia patients. Gastric atrophy was assessed using endoscopic-atrophic-border score. Methylation-variable sites of eight CpG-island genes adjacent to Alu (CDH1, ARRDC4, PPARG, and TRAPPC2L) or LTR (MMP2, CDKN2A, RUNX2, and RUNX3) retroelements and stomach-specific TFF3 gene were analyzed using radioisotope-labeled methylation-specific polymerase chain reaction. RESULTS Mean ages of H. pylori-positive controls with mild, moderate, and severe atrophy were 51, 54, and 65 years and those of H. pylori-associated TFF3 overmethylation at the three atrophic levels (51, 58, and 63 years) tended to be periodic. Alu-adjacent overmethylation (50 years) was earlier than TFF3 overmethylation (58 years) in H. pylori-positive controls with moderate atrophy. Cancer patients with moderate atrophy showed late Alu-adjacent (58 years) overmethylation and frequent LTR-adjacent overmethylation. LTR-adjacent overmethylation was frequent in cancer (66 years) and dysplasia (68 years) patients with severe atrophy. CONCLUSION Atrophic progression is associated with gastric cancer at moderate level by impeding the initiation of Alu-adjacent methylation. LTR-adjacent methylation is increased in cancer patients and subsequently in dysplasia patients.
Collapse
Affiliation(s)
- Jung-Hwan Oh
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mun-Gan Rhyu
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Suk-Il Kim
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mi-Ri Yun
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung-Ha Shin
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung-Jin Hong
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
5
|
Rhyu MG, Oh JH, Hong SJ. Species-specific role of gene-adjacent retroelements in human and mouse gastric carcinogenesis. Int J Cancer 2017; 142:1520-1527. [PMID: 29055047 DOI: 10.1002/ijc.31120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/22/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori (HP) infection promotes the recruitment of bone marrow stem cells into chronic gastritis lesions. Some of these marrow stem cells can differentiate into gastric epithelial cells and neoplastic cells. We propose that HP-associated methylation could stabilize trans-differentiation of marrow-derived stem cells and that an unstable methylation status is associated with a risk of gastric cancer. Pathobiologic behavior of experimental mouse gastric cancer is mild compared to invasive and metastatic human gastric cancer. Differences in epigenetic stabilization of adult cell phenotypes between humans and mice could provide a foundation to explore the development of invasive and metastatic gastric cancer. Retroelements are highly repetitive sequences that play an essential role in the generation of species diversity. In this review, we analyzed retroelements adjacent to human and mouse housekeeping genes and proposed a possible epigenetic mechanism for HP-associated carcinogenesis.
Collapse
Affiliation(s)
- Mun-Gan Rhyu
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung-Hwan Oh
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung-Jin Hong
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
6
|
Abstract
Stomach cancer remains, stubbornly, highly prevalent in East Asia. Still, stomach cancer has few biomarkers by which it can be predicted. Helicobacter pylori infection, a known carcinogen of stomach cancer, usually goes undetected prior to cancer diagnosis, due to the poor mucosal environments that its related gastric atrophy causes. We propose, herein, an endoscopic-biopsy-based cancer-predicting DNA methylation marker. We semi-quantitatively examined the methylation-variable sites near the CpG-island margins by radioisotope-labeling methylation-specific polymerase chain reaction in association with H. pylori, which increases age-related over-methylation in CpG islands of gastric mucosa. These age-related methylation patterns of the transitional-CpG sites are proposed as useful surrogate markers for stomach cancer. It would be helpful for setting the optimal screening interval for high-risk subjects as well as for estimating the prognosis and the predictability for recurrence of early gastric cancer in patients having undergone endoscopic submucosal dissection. New screening-interval guidelines for gastric cancer should be suggested considering individual risk based on age, severity of atrophy, H. pylori status, and DNA methylation pattern.
Collapse
Affiliation(s)
- Jung-Hwan Oh
- Departments of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung-Hoon Jung
- Departments of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung-Jin Hong
- Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mun-Gan Rhyu
- Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
7
|
Oh JH, Rhyu MG, Jung SH, Choi SW, Kim SI, Hong SJ. Slow Overmethylation of Housekeeping Genes in the Body Mucosa Is Associated with the Risk for Gastric Cancer. Cancer Prev Res (Phila) 2014; 7:585-95. [DOI: 10.1158/1940-6207.capr-13-0320] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|