1
|
Wang Y, Xie Q, Tan H, Liao M, Zhu S, Zheng LL, Huang H, Liu B. Targeting cancer epigenetic pathways with small-molecule compounds: Therapeutic efficacy and combination therapies. Pharmacol Res 2021; 173:105702. [PMID: 34102228 DOI: 10.1016/j.phrs.2021.105702] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/07/2021] [Accepted: 05/29/2021] [Indexed: 02/08/2023]
Abstract
Epigenetics mainly refers to covalent modifications to DNA or histones without affecting genomes, which ultimately lead to phenotypic changes in cells or organisms. Given the abundance of regulatory targets in epigenetic pathways and their pivotal roles in tumorigenesis and drug resistance, the development of epigenetic drugs holds a great promise for the current cancer therapy. However, lack of potent, selective, and clinically tractable small-molecule compounds makes the strategy to target cancer epigenetic pathways still challenging. Therefore, this review focuses on epigenetic pathways, small molecule inhibitors targeting DNA methyltransferase (DNMT) and small molecule inhibitors targeting histone modification (the main regulatory targets are histone acetyltransferases (HAT), histone deacetylases (HDACs) and histone methyltransferases (HMTS)), as well as the combination strategies of the existing epigenetic therapeutic drugs and more new therapies to improve the efficacy, which will shed light on a new clue on discovery of more small-molecule drugs targeting cancer epigenetic pathways as promising strategies in the future.
Collapse
Affiliation(s)
- Yi Wang
- Health Management Center, Sichuan Provincial People' Hospital, University of Electronic Science and Technology of China, Chengdu 610072, PR China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, PR China
| | - Qiang Xie
- Department of Stomatology, Sichuan Provincial People' Hospital, University of Electronic Science and Technology of China, Chengdu 610072, PR China
| | - Huidan Tan
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Minru Liao
- Department of Stomatology, Sichuan Provincial People' Hospital, University of Electronic Science and Technology of China, Chengdu 610072, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Shiou Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ling-Li Zheng
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Rd, Xindu Region, Chengdu 610500, PR China.
| | - Haixia Huang
- Oral & Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, 646000, PR China; Department of Prosthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, 646000, PR China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
2
|
Zhang F, Cui Y. Dysregulation of DNA methylation patterns may identify patients with breast cancer resistant to endocrine therapy: A predictive classifier based on differentially methylated regions. Oncol Lett 2019; 18:1287-1303. [PMID: 31423189 PMCID: PMC6607238 DOI: 10.3892/ol.2019.10405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 04/15/2019] [Indexed: 02/06/2023] Open
Abstract
Endocrine therapy (ET) is one of a number of targeted therapies for estrogen receptor-positive breast cancer (BRCA); however, resistance to ET has become the primary issue affecting treatment outcome. In the present study, a predictive classifier was created using a DNA methylation dataset to identify patients susceptible to endocrine resistance. DNA methylation and RNA sequencing data, and the clinicopathological features of BRCA, were obtained from The Cancer Genome Atlas. Stringent criteria were set to select and classify patients into two groups, namely those resistant to ET (n=11) and sensitive to ET (n=21) groups. Bump hunting analysis revealed that 502 out of 135,418 genomic regions were differentially methylated between these two groups; these regions were differentially methylated regions (DMRs). The majority of the CpG sites contained in the DMRs mapped to the promoter region. Functional enrichment analyses indicated that a total of 562 specific genes encompassing these DMRs were primarily associated with 'biological progress of organ morphogenesis and development' and 'cell-cell adhesion' gene ontologies. Logistic regression and Pearson's correlation analysis were conducted to construct a predictive classifier for distinguishing patients resistant or sensitive to ET. The highest areas under the curve and relatively low Akaike information criterion values were associated with a total of 60 DMRs; a risk score retained from this classifier was revealed to be an unfavorable predictor of survival in two additional independent datasets. Furthermore, the majority of genes (55/63) exhibited a statistically significant association between DNA methylation and mRNA expression (P<0.05). The association between the mRNA expression of a number of genes (namely calcium release activated channel regulator 2A, Schlafen family member 12, chromosome 3 open reading frame 18, zinc finger protein 880, dual oxidase 1, major histocompatibility complex, class II, DP β1, C-terminal binding protein 1, ALG13 UDP-N-acetylglucosaminyltransferase subunit and RAS protein activator like 2) and the prognosis of patients with estrogen receptor-positive BRCA and ET resistance was determined using Kaplan-Meier Plotter. In summary, the predictive classifier proposed in the present study may aid the identification of patients sensitive or resistant to ET, and numerous genes maybe potential therapeutic targets to delay the development of resistance to ET.
Collapse
Affiliation(s)
- Fan Zhang
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Yukun Cui
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Correspondence to: Professor Yukun Cui, Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, Guangdong 515041, P.R. China, E-mail:
| |
Collapse
|
3
|
Leung EY, Askarian-Amiri ME, Sarkar D, Ferraro-Peyret C, Joseph WR, Finlay GJ, Baguley BC. Endocrine Therapy of Estrogen Receptor-Positive Breast Cancer Cells: Early Differential Effects on Stem Cell Markers. Front Oncol 2017; 7:184. [PMID: 28929082 PMCID: PMC5591432 DOI: 10.3389/fonc.2017.00184] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/08/2017] [Indexed: 01/13/2023] Open
Abstract
Introduction Endocrine therapy of breast cancer, which either deprives cancer tissue of estrogen or prevents estrogen pathway signaling, is the most common treatment after surgery and radiotherapy. We have previously shown for the estrogen-responsive MCF-7 cell line that exposure to tamoxifen, or deprivation of estrogen, leads initially to inhibition of cell proliferation, followed after several months by the emergence of resistant sub-lines that are phenotypically different from the parental line. We examined the early responses of MCF-7 cells following either exposure to 4-hydroxytamoxifen or deprivation of estrogen for periods of 2 days–4 weeks. Methods Endocrine-sensitive or -resistant breast cancer cell lines were used to examine the expression of the stem cell gene SOX2, and the Wnt effector genes AXIN2 and DKK1 using quantitative PCR analysis. Breast cancer cell lines were used to assess the anti-proliferative effects (as determined by IC50 values) of Wnt pathway inhibitors LGK974 and IWP-2. Results Hormone therapy led to time-dependent increases of up to 10-fold in SOX2 expression, up to threefold in expression of the Wnt target genes AXIN2 and DKK1, and variable changes in NANOG and OCT4 expression. The cells also showed increased mammosphere formation and increased CD24 surface protein expression. Some but not all hormone-resistant MCF-7 sub-lines, emerging after long-term hormonal stress, showed up to 50-fold increases in SOX2 expression and smaller increases in AXIN2 and DKK1 expression. However, the increase in Wnt target gene expression was not accompanied by an increase in sensitivity to Wnt pathway inhibitors LGK974 and IWP-2. A general trend of lower IC50 values was observed in 3-dimensional spheroid culture conditions (which allowed enrichment of cells with cancer stem cell phenotype) relative to monolayer cultures. The endocrine-resistant cell lines showed no significant increase in sensitivity to Wnt inhibitors. Conclusion Hormone treatment of cultured MCF-7 cells leads within 2 days to increased expression of components of the SOX2 and Wnt pathways and to increased potential for mammosphere formation. We suggest that these responses are indicative of early adaptation to endocrine stress with features of stem cell character and that this facilitates the survival of emerging hormone-resistant cell populations.
Collapse
Affiliation(s)
- Euphemia Y Leung
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Molecular Medicine and Pathology Department, University of Auckland, Auckland, New Zealand
| | - Marjan E Askarian-Amiri
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Molecular Medicine and Pathology Department, University of Auckland, Auckland, New Zealand
| | - Debina Sarkar
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Molecular Medicine and Pathology Department, University of Auckland, Auckland, New Zealand
| | - Carole Ferraro-Peyret
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Cancer Research Center of Lyon, INSERM 1052, CNRS5286, Lyon, France.,Faculty of Pharmacy, University of Lyon, Claude Bernard Lyon 1 University, Lyon, France.,Molecular Biology of Tumors, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Wayne R Joseph
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Graeme J Finlay
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Molecular Medicine and Pathology Department, University of Auckland, Auckland, New Zealand
| | - Bruce C Baguley
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Manso L, Mourón S, Tress M, Gómez-López G, Morente M, Ciruelos E, Rubio-Camarillo M, Rodriguez-Peralto JL, Pujana MA, Pisano DG, Quintela-Fandino M. Analysis of Paired Primary-Metastatic Hormone-Receptor Positive Breast Tumors (HRPBC) Uncovers Potential Novel Drivers of Hormonal Resistance. PLoS One 2016; 11:e0155840. [PMID: 27195705 PMCID: PMC4873174 DOI: 10.1371/journal.pone.0155840] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/05/2016] [Indexed: 12/15/2022] Open
Abstract
We sought to identify genetic variants associated with disease relapse and failure to hormonal treatment in hormone-receptor positive breast cancer (HRPBC). We analyzed a series of HRPBC with distant relapse, by sequencing pairs (n = 11) of tumors (primary and metastases) at >800X. Comparative genomic hybridization was performed as well. Top hits, based on the frequency of alteration and severity of the changes, were tested in the TCGA series. Genes determining the most parsimonious prognostic signature were studied for their functional role in vitro, by performing cell growth assays in hormonal-deprivation conditions, a setting that mimics treatment with aromatase inhibitors. Severe alterations were recurrently found in 18 genes in the pairs. However, only MYC, DNAH5, CSFR1, EPHA7, ARID1B, and KMT2C preserved an independent prognosis impact and/or showed a significantly different incidence of alterations between relapsed and non-relapsed cases in the TCGA series. The signature composed of MYC, KMT2C, and EPHA7 best discriminated the clinical course, (overall survival 90,7 vs. 144,5 months; p = 0.0001). Having an alteration in any of the genes of the signature implied a hazard ratio of death of 3.25 (p<0.0001), and early relapse during the adjuvant hormonal treatment. The presence of the D348N mutation in KMT2C and/or the T666I mutation in the kinase domain of EPHA7 conferred hormonal resistance in vitro. Novel inactivating mutations in KMT2C and EPHA7, which confer hormonal resistance, are linked to adverse clinical course in HRPBC.
Collapse
Affiliation(s)
- Luis Manso
- Medical Oncology Department, Hospital 12 de Octubre, Madrid, Spain
| | - Silvana Mourón
- Breast Cancer Clinical Research Unit, CNIO—Spanish National Cancer Research Center, Madrid, Spain
| | - Michael Tress
- Structural Computational Biology Group, CNIO—Spanish National Cancer Research Center, Madrid, Spain
| | - Gonzalo Gómez-López
- Bioinformatics Unit, CNIO—Spanish National Cancer Research Center, Madrid, Spain
| | - Manuel Morente
- Biobank, CNIO—Spanish National Cancer Research Center, Madrid, Spain
| | - Eva Ciruelos
- Breast Cancer Clinical Research Unit, CNIO—Spanish National Cancer Research Center, Madrid, Spain
| | | | | | - Miguel A. Pujana
- Translational Research Laboratory, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, Barcelona, Spain
| | - David G. Pisano
- Bioinformatics Unit, CNIO—Spanish National Cancer Research Center, Madrid, Spain
| | - Miguel Quintela-Fandino
- Breast Cancer Clinical Research Unit, CNIO—Spanish National Cancer Research Center, Madrid, Spain
- * E-mail:
| |
Collapse
|
5
|
DNA methylation of oestrogen-regulated enhancers defines endocrine sensitivity in breast cancer. Nat Commun 2015; 6:7758. [PMID: 26169690 PMCID: PMC4510968 DOI: 10.1038/ncomms8758] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/06/2015] [Indexed: 12/15/2022] Open
Abstract
Expression of oestrogen receptor (ESR1) determines whether a breast cancer patient receives endocrine therapy, but does not guarantee patient response. The molecular factors that define endocrine response in ESR1-positive breast cancer patients remain poorly understood. Here we characterize the DNA methylome of endocrine sensitivity and demonstrate the potential impact of differential DNA methylation on endocrine response in breast cancer. We show that DNA hypermethylation occurs predominantly at oestrogen-responsive enhancers and is associated with reduced ESR1 binding and decreased gene expression of key regulators of ESR1 activity, thus providing a novel mechanism by which endocrine response is abated in ESR1-positive breast cancers. Conversely, we delineate that ESR1-responsive enhancer hypomethylation is critical in transition from normal mammary epithelial cells to endocrine-responsive ESR1-positive cancer. Cumulatively, these novel insights highlight the potential of ESR1-responsive enhancer methylation to both predict ESR1-positive disease and stratify ESR1-positive breast cancer patients as responders to endocrine therapy. The molecular factors influencing patient response to endocrine therapy are poorly understood. Here Stone et al. characterize the DNA methylome of endocrine response and show that methylation of oestrogen receptor-associated enhancers underpins endocrine sensitivity in human breast cancer.
Collapse
|
6
|
Abdel-Hafiz HA, Horwitz KB. Role of epigenetic modifications in luminal breast cancer. Epigenomics 2015; 7:847-62. [PMID: 25689414 DOI: 10.2217/epi.15.10] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Luminal breast cancers represent approximately 75% of cases. Explanations into the causes of endocrine resistance are complex and are generally ascribed to genomic mechanisms. Recently, attention has been drawn to the role of epigenetic modifications in hormone resistance. We review these here. Epigenetic modifications are reversible, heritable and include changes in DNA methylation patterns, modification of histones and altered microRNA expression levels that target the receptors or their signaling pathways. Large-scale analyses indicate distinct epigenomic profiles that distinguish breast cancers from normal and benign tissues. Taking advantage of the reversibility of epigenetic modifications, drugs that target epigenetic modifiers, given in combination with chemotherapies or endocrine therapies, may represent promising approaches to restoration of therapy responsiveness in these cases.
Collapse
Affiliation(s)
- Hany A Abdel-Hafiz
- Division of Endocrinology, Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| | - Kathryn B Horwitz
- Division of Endocrinology, Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Pathology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
7
|
Abstract
One of the best-characterized oncogenic mechanisms in breast cancer is the aberrant activation of phosphatidylinositol-3-kinase, protein kinase B, and mammalian target of rapamycin signaling. In both endocrine-resistant disease and breast cancer stem cells, this is commonly caused by specific genetic lesions or amplification of key pathway components or both. These observations have generated two interesting hypotheses. Firstly, do these genetic anomalies provide clinically significant biomarkers predictive of endocrine resistance? Secondly, do tamoxifen-resistant breast cancer cells emerge from a stem-like cell population? New studies, published in Breast Cancer Research, raise the possibility that these hypotheses are intrinsically linked.
Collapse
Affiliation(s)
- Andrew Stone
- Cancer Epigenetics Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, 2010, NSW, Australia.
| | - Elizabeth A Musgrove
- Wolfson Wohl Cancer Research Centre, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, Bearsden, G61 1QH, Scotland.
| |
Collapse
|