1
|
Bellver‐Sanchis A, Ribalta‐Vilella M, Irisarri A, Gehlot P, Choudhary BS, Jana A, Vyas VK, Banerjee DR, Pallàs M, Guerrero A, Griñán‐Ferré C. G9a an Epigenetic Therapeutic Strategy for Neurodegenerative Conditions: From Target Discovery to Clinical Trials. Med Res Rev 2025; 45:985-1015. [PMID: 39763018 PMCID: PMC11976383 DOI: 10.1002/med.22096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 04/09/2025]
Abstract
This review provides a comprehensive overview of the role of G9a/EHMT2, focusing on its structure and exploring the impact of its pharmacological and/or gene inhibition in various neurological diseases. In addition, we delve into the advancements in the design and synthesis of G9a/EHMT2 inhibitors, which hold promise not only as a treatment for neurodegeneration diseases but also for other conditions, such as cancer and malaria. Besides, we presented the discovery of dual therapeutic approaches based on G9a inhibition and different epigenetic enzymes like histone deacetylases, DNA methyltransferases, and other lysine methyltransferases. Hence, findings offer valuable insights into developing novel and promising therapeutic strategies targeting G9a/EHMT2 for managing these neurological conditions.
Collapse
Affiliation(s)
- Aina Bellver‐Sanchis
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Marta Ribalta‐Vilella
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Alba Irisarri
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Pinky Gehlot
- Department of Pharmaceutical ChemistryInstitute of PharmacyNirma UniversityAhmedabadIndia
| | - Bhanwar Singh Choudhary
- Department of PharmacyCentral University of RajasthanAjmerIndia
- Drug Discovery and Development Centre (H3D)University of Cape TownRondeboschSouth Africa
| | - Abhisek Jana
- Department of ChemistryNational Institute of Technology DurgapurDurgapurIndia
| | - Vivek Kumar Vyas
- Department of Pharmaceutical ChemistryInstitute of PharmacyNirma UniversityAhmedabadIndia
| | - Deb Ranjan Banerjee
- Department of ChemistryNational Institute of Technology DurgapurDurgapurIndia
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
- Instituto de Salud Carlos III, Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Ana Guerrero
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Christian Griñán‐Ferré
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
- Instituto de Salud Carlos III, Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| |
Collapse
|
2
|
Samiec M, Trzcińska M. From genome to epigenome: Who is a predominant player in the molecular hallmarks determining epigenetic mechanisms underlying ontogenesis? Reprod Biol 2024; 24:100965. [PMID: 39467448 DOI: 10.1016/j.repbio.2024.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/12/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
Genetic factors are one of the basic determinants affecting ontogenesis in mammals. Nevertheless, on the one hand, epigenetic factors have been found to exert the preponderant and insightful impact on the intracellular mechanistic networks related to not only initiation and suppression, but also up- and downregulation of gene expression in all the phases of ontogenetic development in a variety of mammalian species. On the other hand, impairments in the epigenetic mechanisms underlying reprogramming of transcriptional activity of genes (termed epimutations) not only give rise to a broad spectrum of acute and chronic developmental abnormalities in mammalian embryos, foetuses and neonates, but also contribute to premature/expedited senescence or neoplastic transformation of cells and even neurodegenerative and mental disorders. The current article is focused on the unveiling the present knowledge aimed at the identification, classification and characterization of epigenetic agents as well as multifaceted interpretation of current and coming trends targeted at recognizing the epigenetic background of proper ontogenesis in mammals. Moreover, the next objective of this paper is to unravel the mechanistic insights into a wide array of disturbances leading to molecular imbalance taking place during epigenetic reprogramming of genomic DNA. The above-indicated imbalance seems to play a predominant role in the initiation and progression of anatomo-, histo-, and physiopathological processes throughout ontogenetic development. Conclusively, different modalities of epigenetically assisted therapeutic procedures that have been exemplified in the current article, might be the powerful and promiseful tools reliable and feasible in the medical treatments of several diseases triggered by dysfunctions in the epigenetic landscapes, e.g., myelodysplastic syndromes or epilepsy.
Collapse
Affiliation(s)
- Marcin Samiec
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice near Kraków, Poland.
| | - Monika Trzcińska
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice near Kraków, Poland.
| |
Collapse
|
3
|
Qin Y, Huang Y, Lin W, Huang R, Li K, Han X, Ren Y. Neurotoxic effects induced by flunitrazepam and its metabolites in zebrafish: Oxidative stress, apoptosis, and histone hypoacetylation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170521. [PMID: 38290676 DOI: 10.1016/j.scitotenv.2024.170521] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
Benzodiazepines (BZDs) have been widely detected in aquatic environments, but their neurotoxic effects and potential mechanisms are still unclear. This study focuses on flunitrazepam (FLZ) and its metabolite, 7-aminoflunitrazepam (7-FLZ), as representative psychotropic BZD. We investigated their neurotoxic effects on adult zebrafish following a 30-day exposure to environmentally relevant concentrations. The findings reveal that exposure to these drugs induces anxiety-like and aggressive behaviors in zebrafish. Additionally, notable morphological damage to brain tissue and mitochondrial structures was observed. Through TUNEL staining, an increase in apoptotic cells was detected in the brain tissue of the exposed group, accompanied by marked elevations in ROS and caspase-3/9 levels. The upregulation of apoptosis-related genes Bax, p53, and Bcl-2 confirmed the occurrence of apoptosis. Furthermore, exposure to the drugs resulted in decreased acetylation levels of brain histones H3 and H4. The upregulation of histone deacetylation enzyme genes (HDAC1, HDAC3, HDAC4, and HDAC6) supported this result. Molecular docking results suggest that compared to 7-FLZ, FLZ has a higher binding affinity with HDAC3 and HDAC4, explaining why it causes lower histone acetylation levels. This study in zebrafish elucidates the neurotoxicity and molecular mechanisms induced by FLZ and 7-FLZ, which is significant for further understanding the impact of BZDs on human health and assessing their ecological risks.
Collapse
Affiliation(s)
- Yingjun Qin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yajing Huang
- Guangdong YueGang Water Supply Co. Ltd, Shenzhen 518021, PR China
| | - Wenting Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Rui Huang
- Guangdong YueGang Water Supply Co. Ltd, Shenzhen 518021, PR China
| | - Kan Li
- Anti-Drug Technology Center of Guangdong Province, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, PR China
| | - Xing Han
- Anti-Drug Technology Center of Guangdong Province, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, PR China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou 510006, PR China.
| |
Collapse
|
4
|
Basavarajappa BS, Subbanna S. Unlocking the epigenetic symphony: histone acetylation's impact on neurobehavioral change in neurodegenerative disorders. Epigenomics 2024; 16:331-358. [PMID: 38321930 PMCID: PMC10910622 DOI: 10.2217/epi-2023-0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
Recent genomics and epigenetic advances have empowered the exploration of DNA/RNA methylation and histone modifications crucial for gene expression in response to stress, aging and disease. Interest in understanding neuronal plasticity's epigenetic mechanisms, influencing brain rewiring amid development, aging and neurodegenerative disorders, continues to grow. Histone acetylation dysregulation, a commonality in diverse brain disorders, has become a therapeutic focus. Histone acetyltransferases and histone deacetylases have emerged as promising targets for neurodegenerative disorder treatment. This review delves into histone acetylation regulation, potential therapies and future perspectives for disorders like Alzheimer's, Parkinson's and Huntington's. Exploring genetic-environmental interplay through models and studies reveals molecular changes, behavioral insights and early intervention possibilities targeting the epigenome in at-risk individuals.
Collapse
Affiliation(s)
- Balapal S Basavarajappa
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, NY 10032, USA
- Department of Psychiatry, Columbia University Irving Medical Center, NY 10032, USA
- Department of Psychiatry, New York University Langone Medical Center, NY 10016, USA
| | - Shivakumar Subbanna
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| |
Collapse
|
5
|
Jiang D, Li T, Guo C, Tang TS, Liu H. Small molecule modulators of chromatin remodeling: from neurodevelopment to neurodegeneration. Cell Biosci 2023; 13:10. [PMID: 36647159 PMCID: PMC9841685 DOI: 10.1186/s13578-023-00953-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
The dynamic changes in chromatin conformation alter the organization and structure of the genome and further regulate gene transcription. Basically, the chromatin structure is controlled by reversible, enzyme-catalyzed covalent modifications to chromatin components and by noncovalent ATP-dependent modifications via chromatin remodeling complexes, including switch/sucrose nonfermentable (SWI/SNF), inositol-requiring 80 (INO80), imitation switch (ISWI) and chromodomain-helicase DNA-binding protein (CHD) complexes. Recent studies have shown that chromatin remodeling is essential in different stages of postnatal and adult neurogenesis. Chromatin deregulation, which leads to defects in epigenetic gene regulation and further pathological gene expression programs, often causes a wide range of pathologies. This review first gives an overview of the regulatory mechanisms of chromatin remodeling. We then focus mainly on discussing the physiological functions of chromatin remodeling, particularly histone and DNA modifications and the four classes of ATP-dependent chromatin-remodeling enzymes, in the central and peripheral nervous systems under healthy and pathological conditions, that is, in neurodegenerative disorders. Finally, we provide an update on the development of potent and selective small molecule modulators targeting various chromatin-modifying proteins commonly associated with neurodegenerative diseases and their potential clinical applications.
Collapse
Affiliation(s)
- Dongfang Jiang
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Tingting Li
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Caixia Guo
- grid.9227.e0000000119573309Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Tie-Shan Tang
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Hongmei Liu
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| |
Collapse
|
6
|
Qi Z, Li J, Li M, Du X, Zhang L, Wang S, Xu B, Liu W, Xu Z, Deng Y. The Essential Role of Epigenetic Modifications in Neurodegenerative Diseases with Dyskinesia. Cell Mol Neurobiol 2022; 42:2459-2472. [PMID: 34383231 PMCID: PMC11421617 DOI: 10.1007/s10571-021-01133-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/18/2021] [Indexed: 12/20/2022]
Abstract
Epigenetics play an essential role in the occurrence and improvement of many diseases. Evidence shows that epigenetic modifications are crucial to the regulation of gene expression. DNA methylation is closely linked to embryonic development in mammalian. In recent years, epigenetic drugs have shown unexpected therapeutic effects on neurological diseases, leading to the study of the epigenetic mechanism in neurodegenerative diseases. Unlike genetics, epigenetics modify the genome without changing the DNA sequence. Research shows that epigenetics is involved in all aspects of neurodegenerative diseases. The study of epigenetic will provide valuable insights into the molecular mechanism of neurodegenerative diseases, which may lead to new treatments and diagnoses. This article reviews the role of epigenetic modifications neurodegenerative diseases with dyskinesia, and discusses the therapeutic potential of epigenetic drugs in neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhipeng Qi
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Jiashuo Li
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Minghui Li
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Xianchao Du
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Lei Zhang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Shuang Wang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Zhaofa Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.
| |
Collapse
|
7
|
Mohd Murshid N, Aminullah Lubis F, Makpol S. Epigenetic Changes and Its Intervention in Age-Related Neurodegenerative Diseases. Cell Mol Neurobiol 2022; 42:577-595. [PMID: 33074454 PMCID: PMC11441183 DOI: 10.1007/s10571-020-00979-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023]
Abstract
Epigenetic mechanisms involving the modulation of gene activity without modifying the DNA bases are reported to have lifelong effects on mature neurons in addition to their impact on synaptic plasticity and cognition. Histone methylation and acetylation are involved in synchronizing gene expression and protein function in neuronal cells. Studies have demonstrated in experimental models of neurodegenerative disorders that manipulations of these two mechanisms influence the susceptibility of neurons to degeneration and apoptosis. In Alzheimer's disease (AD), the expression of presenilin 1 (PSEN1) is markedly increased due to decreased methylation at CpG sites, thus promoting the accumulation of toxic amyloid-β (Aβ) peptide. In Parkinson's disease (PD), dysregulation of α-synuclein (SNCA) expression is presumed to occur via aberrant methylation at CpG sites, which controls the activation or suppression of protein expression. Mutant Huntingtin (mtHTT) alters the activity of histone acetyltransferases (HATs), causing the dysregulation of transcription observed in most Huntington's disease (HD) cases. Folate, vitamin B6, vitamin B12, and S-adenosylmethionine (SAM) are vital cofactors involved in DNA methylation modification; 5-azacytidine (AZA) is the most widely studied DNA methyltransferase (DNMT) inhibitor, and dietary polyphenols are DNMT inhibitors in vitro. Drug intervention is believed to reverse the epigenetic mechanisms to serve as a regulator in neuronal diseases. Nevertheless, the biochemical effect of the drugs on brain function and the underlying mechanisms are not well understood. This review focuses on further discussion of therapeutic targets, emphasizing the potential role of epigenetic factors including histone and DNA modifications in the diseases.
Collapse
Affiliation(s)
- Nuraqila Mohd Murshid
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Faridah Aminullah Lubis
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Histone Methylation Regulation in Neurodegenerative Disorders. Int J Mol Sci 2021; 22:ijms22094654. [PMID: 33925016 PMCID: PMC8125694 DOI: 10.3390/ijms22094654] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Advances achieved with molecular biology and genomics technologies have permitted investigators to discover epigenetic mechanisms, such as DNA methylation and histone posttranslational modifications, which are critical for gene expression in almost all tissues and in brain health and disease. These advances have influenced much interest in understanding the dysregulation of epigenetic mechanisms in neurodegenerative disorders. Although these disorders diverge in their fundamental causes and pathophysiology, several involve the dysregulation of histone methylation-mediated gene expression. Interestingly, epigenetic remodeling via histone methylation in specific brain regions has been suggested to play a critical function in the neurobiology of psychiatric disorders, including that related to neurodegenerative diseases. Prominently, epigenetic dysregulation currently brings considerable interest as an essential player in neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS) and drugs of abuse, including alcohol abuse disorder, where it may facilitate connections between genetic and environmental risk factors or directly influence disease-specific pathological factors. We have discussed the current state of histone methylation, therapeutic strategies, and future perspectives for these disorders. While not somatically heritable, the enzymes responsible for histone methylation regulation, such as histone methyltransferases and demethylases in neurons, are dynamic and reversible. They have become promising potential therapeutic targets to treat or prevent several neurodegenerative disorders. These findings, along with clinical data, may provide links between molecular-level changes and behavioral differences and provide novel avenues through which the epigenome may be targeted early on in people at risk for neurodegenerative disorders.
Collapse
|
9
|
Boros FA, Maszlag-Török R, Vécsei L, Klivényi P. Increased level of NEAT1 long non-coding RNA is detectable in peripheral blood cells of patients with Parkinson's disease. Brain Res 2020; 1730:146672. [PMID: 31953211 DOI: 10.1016/j.brainres.2020.146672] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/21/2019] [Accepted: 01/12/2020] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder that poses serious burden to individuals and society as well. Although a number of PD associated genetic factors have been identified, the molecular mechanism of the disease so far has not been completely elucidated. Involvement of long non-coding RNAs (lncRNAs) in the pathology of neurodegenerative disorders is attracting increased interest because of the diverse mechanisms lncRNAs affect gene expression and cellular homeostasis at different levels. We aimed to test the feasibility of detecting alterations in lncRNA levels in easily accessible samples of PD patients by routine laboratory technique. By narrowing the number of selected lncRNAs implicated in neurodegeneration and increasing the number of PD samples included, we found one out of 41 lncRNAs readily detectable in increased level in peripheral blood of PD patients. We detected NEAT1 to be significantly up-regulated in PD patients in multiple comparisons. NEAT1 is the core element of nuclear paraspeckles and it plays role in regulation of transcription, mRNA and miRNA levels, mitochondrial and cellular homeostasis. Our finding is in accord with recent data demonstrating changes in the level of NEAT1 in neurons of PD patients and in several models of the disease. However, to our knowledge this is the first study to report NEAT1 up-regulation in blood of PD patients. Identification of altered expression of this lncRNA in the periphery might help to a better understanding of the mechanisms underlying PD, and can contribute to the identification of new therapeutic targets and disease markers.
Collapse
Affiliation(s)
- Fanni Annamária Boros
- Department of Neurology, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Rita Maszlag-Török
- Department of Neurology, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; MTA-SZTE Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; MTA-SZTE Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Péter Klivényi
- Department of Neurology, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary.
| |
Collapse
|
10
|
Ellison EM, Abner EL, Lovell MA. Multiregional analysis of global 5-methylcytosine and 5-hydroxymethylcytosine throughout the progression of Alzheimer's disease. J Neurochem 2017; 140:383-394. [PMID: 27889911 PMCID: PMC5250541 DOI: 10.1111/jnc.13912] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/19/2016] [Accepted: 11/22/2016] [Indexed: 12/16/2022]
Abstract
Epigenetic modifications to cytosine are known to alter transcriptional states and deregulate gene expression in cancer, embryonic development, and most recently in neurodegeneration. To test the hypothesis that global levels of cytosine modification are altered throughout the progression of Alzheimer's disease, 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) were quantified using gas chromatography/mass spectrometry (GC/MS) and stable labeled internal standards of cytosine, 5-mC, and 5-hmC. Cytosine modifications were quantified in DNA extracted from tissue specimens of four brain regions (cerebellum, inferior parietal lobe, superior and middle temporal gyrus, and hippocampus/parahippocampal gyrus) of cognitively normal control (NC) subjects and subjects with mild cognitive impairment (MCI), preclinical Alzheimer's disease (PCAD), late onset Alzheimer's disease, frontotemporal lobar degeneration (FTLD) and dementia with Lewy bodies (DLB). Repeated measures analyses of the data show significant alterations in 5-mC and 5-hmC in early stages of Alzheimer's disease (PCAD and MCI), as well as FTLD and DLB subjects, across multiple regions of the brain. These data suggest alterations in epigenetic regulation of genes may play an early role in the progression of AD as well as other types of neurodegeneration.
Collapse
Affiliation(s)
| | - Erin L. Abner
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Department of Epidemiology, University of Kentucky, Lexington, KY
| | - Mark A. Lovell
- Department of Chemistry, University of Kentucky, Lexington, KY
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
| |
Collapse
|
11
|
Francelle L, Lotz C, Outeiro T, Brouillet E, Merienne K. Contribution of Neuroepigenetics to Huntington's Disease. Front Hum Neurosci 2017; 11:17. [PMID: 28194101 PMCID: PMC5276857 DOI: 10.3389/fnhum.2017.00017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/10/2017] [Indexed: 12/29/2022] Open
Abstract
Unbalanced epigenetic regulation is thought to contribute to the progression of several neurodegenerative diseases, including Huntington’s disease (HD), a genetic disorder considered as a paradigm of epigenetic dysregulation. In this review, we attempt to address open questions regarding the role of epigenetic changes in HD, in the light of recent advances in neuroepigenetics. We particularly discuss studies using genome-wide scale approaches that provide insights into the relationship between epigenetic regulations, gene expression and neuronal activity in normal and diseased neurons, including HD neurons. We propose that cell-type specific techniques and 3D-based methods will advance knowledge of epigenome in the context of brain region vulnerability in neurodegenerative diseases. A better understanding of the mechanisms underlying epigenetic changes and of their consequences in neurodegenerative diseases is required to design therapeutic strategies more effective than current strategies based on histone deacetylase (HDAC) inhibitors. Researches in HD may play a driving role in this process.
Collapse
Affiliation(s)
- Laetitia Francelle
- Department of NeuroDegeneration and Restorative Research, University Medical Center Goettingen Goettingen, Germany
| | - Caroline Lotz
- CNRS UMR 7364, Laboratory of Cognitive and Adaptive Neurosciences, University of Strasbourg Strasbourg, France
| | - Tiago Outeiro
- Department of NeuroDegeneration and Restorative Research, University Medical Center Goettingen Goettingen, Germany
| | - Emmanuel Brouillet
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de Recherche Fondamentale, Institut d'Imagerie Biomédicale, Molecular Imaging Center, Neurodegenerative diseases Laboratory, UMR 9199, CNRS Université Paris-Sud, Université Paris-Saclay Fontenay-aux-Roses, France
| | - Karine Merienne
- CNRS UMR 7364, Laboratory of Cognitive and Adaptive Neurosciences, University of Strasbourg Strasbourg, France
| |
Collapse
|
12
|
Guidelines for clinical pharmacological practices in Huntington's disease. Rev Neurol (Paris) 2016; 172:423-432. [PMID: 27561440 DOI: 10.1016/j.neurol.2016.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/02/2016] [Accepted: 07/25/2016] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Evidence-based medicine is a difficult goal to achieve in rare diseases where randomized controlled trials are lacking. This report provides guidelines that capitalize on both the literature and expertise of the French National Huntington Disease Reference Centre to optimalize pharmacological therapeutic interventions for Huntington's disease (HD). MATERIAL AND METHODS HD experts conducted a systematic analysis of the literature from 1965 to 2013, using a scoring procedure established by the French National Authority for Health. These experts offered their views when evidence was missing to set up provisional guidelines for care in HD. These guidelines were then scored and amended through two subsequent online questionnaires (using SurveyMonkey® scoring), and one face-to-face meeting with an external multidisciplinary working group as a step towards validation. RESULTS Except for the beneficial effects of tetrabenazine in chorea, none of the published recommendations were grounded on established scientific evidence. Second-generation antipsychotics are nevertheless the first choice for patients with psychiatric manifestations (low level of evidence). All other guidelines are based on low-level evidence and little professional agreement. CONCLUSION Patients' care has greatly improved over the last few years despite the lack of high-level evidence standards. Guidelines are based on the expertise of trained specialists from the French National Plan for Rare Diseases. This strategy should now be extended internationally to promote future studies and to harmonize worldwide care of HD.
Collapse
|
13
|
Pan Y, Daito T, Sasaki Y, Chung YH, Xing X, Pondugula S, Swamidass SJ, Wang T, Kim AH, Yano H. Inhibition of DNA Methyltransferases Blocks Mutant Huntingtin-Induced Neurotoxicity. Sci Rep 2016; 6:31022. [PMID: 27516062 PMCID: PMC4981892 DOI: 10.1038/srep31022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023] Open
Abstract
Although epigenetic abnormalities have been described in Huntington's disease (HD), the causal epigenetic mechanisms driving neurodegeneration in HD cortex and striatum remain undefined. Using an epigenetic pathway-targeted drug screen, we report that inhibitors of DNA methyltransferases (DNMTs), decitabine and FdCyd, block mutant huntingtin (Htt)-induced toxicity in primary cortical and striatal neurons. In addition, knockdown of DNMT3A or DNMT1 protected neurons against mutant Htt-induced toxicity, together demonstrating a requirement for DNMTs in mutant Htt-triggered neuronal death and suggesting a neurodegenerative mechanism based on DNA methylation-mediated transcriptional repression. Inhibition of DNMTs in HD model primary cortical or striatal neurons restored the expression of several key genes, including Bdnf, an important neurotrophic factor implicated in HD. Accordingly, the Bdnf promoter exhibited aberrant cytosine methylation in mutant Htt-expressing cortical neurons. In vivo, pharmacological inhibition of DNMTs in HD mouse brains restored the mRNA levels of key striatal genes known to be downregulated in HD. Thus, disturbances in DNA methylation play a critical role in mutant Htt-induced neuronal dysfunction and death, raising the possibility that epigenetic strategies targeting abnormal DNA methylation may have therapeutic utility in HD.
Collapse
Affiliation(s)
- Yanchun Pan
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Takuji Daito
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yo Sasaki
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yong Hee Chung
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaoyun Xing
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Santhi Pondugula
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - S. Joshua Swamidass
- Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Albert H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
14
|
Horvath S, Langfelder P, Kwak S, Aaronson J, Rosinski J, Vogt TF, Eszes M, Faull RL, Curtis MA, Waldvogel HJ, Choi OW, Tung S, Vinters HV, Coppola G, Yang XW. Huntington's disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels. Aging (Albany NY) 2016; 8:1485-512. [PMID: 27479945 PMCID: PMC4993344 DOI: 10.18632/aging.101005] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/12/2016] [Indexed: 01/10/2023]
Abstract
Age of Huntington's disease (HD) motoric onset is strongly related to the number of CAG trinucleotide repeats in the huntingtin gene, suggesting that biological tissue age plays an important role in disease etiology. Recently, a DNA methylation based biomarker of tissue age has been advanced as an epigenetic aging clock. We sought to inquire if HD is associated with an accelerated epigenetic age. DNA methylation data was generated for 475 brain samples from various brain regions of 26 HD cases and 39 controls. Overall, brain regions from HD cases exhibit a significant epigenetic age acceleration effect (p=0.0012). A multivariate model analysis suggests that HD status increases biological age by 3.2 years. Accelerated epigenetic age can be observed in specific brain regions (frontal lobe, parietal lobe, and cingulate gyrus). After excluding controls, we observe a negative correlation (r=-0.41, p=5.5×10-8) between HD gene CAG repeat length and the epigenetic age of HD brain samples. Using correlation network analysis, we identify 11 co-methylation modules with a significant association with HD status across 3 broad cortical regions. In conclusion, HD is associated with an accelerated epigenetic age of specific brain regions and more broadly with substantial changes in brain methylation levels.
Collapse
Affiliation(s)
- Steve Horvath
- Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Peter Langfelder
- Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Seung Kwak
- CHDI Management/CHDI Foundation, Princeton, NJ 08540, USA
| | - Jeff Aaronson
- CHDI Management/CHDI Foundation, Princeton, NJ 08540, USA
| | - Jim Rosinski
- CHDI Management/CHDI Foundation, Princeton, NJ 08540, USA
| | - Thomas F. Vogt
- CHDI Management/CHDI Foundation, Princeton, NJ 08540, USA
| | - Marika Eszes
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science (FMHS), University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Science (FMHS), University of Auckland, Auckland, New Zealand
| | - Richard L.M. Faull
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science (FMHS), University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Science (FMHS), University of Auckland, Auckland, New Zealand
| | - Maurice A. Curtis
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science (FMHS), University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Science (FMHS), University of Auckland, Auckland, New Zealand
| | - Henry J. Waldvogel
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science (FMHS), University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Science (FMHS), University of Auckland, Auckland, New Zealand
| | - Oi-Wa Choi
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Spencer Tung
- Pathology and Laboratory Medicine, and Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Harry V. Vinters
- Pathology and Laboratory Medicine, and Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Giovanni Coppola
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA Brain Research Institute, Los Angeles, CA 90095, USA
| | - X. William Yang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA Brain Research Institute, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Merienne K, Boutillier AL. [Epigenetic regulations and cerebral plasticity: towards new therapeutic options in neurodegenerative diseases?]. Biol Aujourdhui 2016; 210:297-309. [PMID: 28327286 DOI: 10.1051/jbio/2017002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Indexed: 11/15/2022]
Abstract
Although revealed in the 1950's, epigenetics is still a fast-growing field. Its delineations continuously evolve and become clarified. In particular, "neuroepigenetics", a notion that encompasses epigenetic regulations associated with neuronal processes, appears very promising. Indeed, the challenge to be undertaken in this sub-field is double. On the one hand, it should bring molecular comprehension of specific neuronal processes, some of them falling within the long term regulations, such as learning and memory. On the other hand, it could bring therapeutic options for brain diseases, e.g. neurodegenerative diseases such as Alzheimer's or Huntington's diseases.
Collapse
|
16
|
Ji H, Wang Y, Liu G, Xu X, Dai D, Chen Z, Zhou D, Zhou X, Han L, Li Y, Zhuo R, Hong Q, Jiang L, Zhang X, Liu Y, Xu L, Chang L, Li J, An P, Duan S, Wang Q. OPRK1 promoter hypermethylation increases the risk of Alzheimer's disease. Neurosci Lett 2015; 606:24-9. [PMID: 26300544 DOI: 10.1016/j.neulet.2015.08.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 08/07/2015] [Accepted: 08/16/2015] [Indexed: 10/23/2022]
Abstract
As a member of the opioid family, κ-opioid receptors play important role in cognitive and learning functions. The purpose of this study was to evaluate the association of OPRK1 promoter methylation with Alzheimer's disease (AD). OPRK1 DNA methylation levels of 48 cases and 58 well matched controls were measured using the bisulphite pyrosequencing technology. Our results showed that there was a significant correlation between three CpG sites on the OPRK1 promoter region (r>=0.715, p<0.001). Thus, the mean methylation value of the three CpG sites was used for the case-control comparison. And our results showed there was a significantly higher OPRK1 promoter methylation in AD cases than in controls (p=0.006, adjusted p=0.012). Subsequent luciferase reporter assay showed the CpGs containing fragment of OPRK1 promoter significantly increased the expression of reporter gene (Fold=2.248, p=0.0235). In summary, our results suggested that OPRK1 promoter hypermethylation might increase the risk of AD through its regulation on the gene expression of OPRK1.
Collapse
Affiliation(s)
- Huihui Ji
- Ningbo Key Lab of Behavior Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yunliang Wang
- Department of Neurology, the 148 Central Hospital of PLA, Zibo, Shandong 255000, China.
| | - Guili Liu
- Ningbo Key Lab of Behavior Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xuting Xu
- Ningbo Key Lab of Behavior Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Dongjun Dai
- Ningbo Key Lab of Behavior Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | | | | | - Xiaohui Zhou
- Department of Internal Medicine for Cadres, the First Affiliated Hospital of Xinjiang Medical University, Urumchi 830000, China
| | - Liyuan Han
- Ningbo Key Lab of Behavior Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ying Li
- Ningbo No. 1 Hospital, Zhejiang 315200, China
| | - Renjie Zhuo
- Ningbo Key Lab of Behavior Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qingxiao Hong
- Ningbo Key Lab of Behavior Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Liting Jiang
- Ningbo Key Lab of Behavior Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaonan Zhang
- Ningbo Key Lab of Behavior Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yu Liu
- Ningbo Key Lab of Behavior Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Lei Xu
- Ningbo Key Lab of Behavior Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Lan Chang
- Ningbo Key Lab of Behavior Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jinfeng Li
- Department of Neurology, the 148 Central Hospital of PLA, Zibo, Shandong 255000, China
| | - Pengyuan An
- Ningbo Key Lab of Behavior Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shiwei Duan
- Ningbo Key Lab of Behavior Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Qinwen Wang
- Ningbo Key Lab of Behavior Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|