1
|
Yu H, Wang C, Wu Y, He C, Zou S. Association between GRIN2B DNA methylation and cognitive impairment: a cross-sectional study of patients with bipolar depression. Front Psychiatry 2025; 16:1574391. [PMID: 40438331 PMCID: PMC12116458 DOI: 10.3389/fpsyt.2025.1574391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/25/2025] [Indexed: 06/01/2025] Open
Abstract
Background Cognitive impairment is a prevalent feature throughout the course of bipolar disorder (BD) and may contribute to recurrent episodes and poor prognosis. Despite its significant clinical impact, the biological mechanisms underlying cognitive impairment in BD remain poorly understood, complicating treatment efforts. The NR2B subunit of the N-methyl-D-aspartate (NMDA) receptor, encoded by the GRIN2B gene, plays a critical role in cognitive functions. Methods In this study, we measured the methylation levels of the promoter region of the GRIN2B gene in peripheral blood samples from patients with bipolar depression and healthy controls using the MassARRAY method. Cognitive performance was assessed through a series of standardized neuropsychological tests. Subsequently, we analyzed the correlation between GRIN2B gene promoter methylation levels and cognitive performance in patients with bipolar depression. Results We identified aberrant methylation levels at multiple CpG sites within the GRIN2B gene promoter region in patients with bipolar depression compared to healthy controls. These methylation changes were significantly associated with impairments in several cognitive domains, including attention and executive function, even after adjusting for potential confounding factors. These findings suggest that aberrant methylation in the GRIN2B gene promoter region may play a critical role in cognitive impairment in bipolar depression. Conclusions DNA methylation levels in the GRIN2B gene promoter region may represent a potential therapeutic target for addressing cognitive impairment in bipolar depression. These findings provide a theoretical foundation for future clinical diagnosis and the development of targeted treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | - Shaohong Zou
- Department of Clinical Psychology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
2
|
Jiang Y, Hu J, Li Y, Tang X, Peng X, Xie L, Song H, Zhou Z, Xu J. Comprehensive Genomic Analysis Reveals Novel Transposable Element-Derived MicroRNA Regulating Caste Differentiation in Honeybees. Mol Biol Evol 2025; 42:msaf074. [PMID: 40154540 PMCID: PMC12008770 DOI: 10.1093/molbev/msaf074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 02/19/2025] [Accepted: 03/13/2025] [Indexed: 04/01/2025] Open
Abstract
The honeybee (Apis mellifera) is a highly social insect whose caste differentiation is regulated by epigenetic mechanisms, representing a classic example of phenotypic plasticity in social insects. Although the importance of transposable elements (TEs) in epigenetic research is well recognized, their specific role in honeybee caste differentiation has not been fully explored. This study reveals a novel regulatory mechanism where the microRNA (miRNA) ame-mir-3721-3p, derived from ApME (Apis miniature inverted-repeat TEs), suppresses DNA methyltransferase gene DNMT3, promoting queen-like development in honeybee larvae. Genome-wide analysis identified 43 ApME elements in Apis, with ApMETm15 being particularly abundant and species-specific. These elements gave rise to 6 miRNAs, including ame-mir-3721-3p which showed notable regulatory potential. Target gene prediction and luciferase reporter assays confirmed that ame-mir-3721-3p binds to and suppresses DNMT3 expression. Spatiotemporal expression analysis indicated that ame-mir-3721-3p is significantly upregulated during the critical L3 larval stage, exhibiting a similar expression pattern to DNMT3. Larval feeding experiments with agomir demonstrated that ame-mir-3721-3p suppresses DNMT3 expression and significantly impacts the expression of genes related to the juvenile hormone and ecdysone pathways. Further physiological evidence showed that when larvae were treated with agomir-3721 during the critical caste differentiation window (L3-L4 stage), the emerging adult bees exhibited increased body size, doubled ovarian area, and significantly higher frequency of ovary development, with significant upregulation of ovarian-specific marker genes. These findings provide direct evidence for ame-mir-3721-3p's role in promoting queen-like developmental trajectories during caste differentiation, uncovering a new regulatory pathway in honeybee development and offering insights into epigenetic mechanisms in social insects.
Collapse
Affiliation(s)
- Yan Jiang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| | - Jingsong Hu
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| | - Yaohui Li
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| | - Xiangyou Tang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| | - Xiaomei Peng
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| | - Linxuan Xie
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| | - Huali Song
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| | - Zeyang Zhou
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| | - Jinshan Xu
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| |
Collapse
|
3
|
Possamai-Della T, Peper-Nascimento J, Varela RB, Daminelli T, Fries GR, Ceretta LB, Juruena MF, Quevedo J, Valvassori SS. Exploring the impact of childhood maltreatment on epigenetic and brain-derived neurotrophic factor changes in bipolar disorder and healthy control. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01917-6. [PMID: 39540902 DOI: 10.1007/s00406-024-01917-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Childhood maltreatment may be linked to epigenetics and brain-derived neurotrophic factor (BDNF) changes, which are mechanisms altered in several psychiatric conditions, including bipolar disorder (BD). However, the specific mechanisms connecting childhood maltreatment to the pathophysiology of BD remain unclear. The present study aims to examine the effects of childhood maltreatment on epigenetic and neurotrophic outcomes in BD patients and health controls. History of childhood maltreatment was obtained using the Childhood Trauma Questionnaire (CTQ) from 36 BD outpatients and 46 healthy subjects. DNA methyltransferase (DNMT) activity, HMTH3K9 activity, histone 3 lysine 9 tri-methylation (H3K9me3) levels, histone deacetylase (HDAC)1 levels, HDAC2 levels, histone 3 lysine 14 acetylation (H3K14ac) levels, and mRNA of BDNF were evaluated in peripheral blood mononuclear cells. Plasma BDNF levels were also measured. Total scores of CTQ, as well as the subscale scores of emotional abuse, sexual abuse, and emotional neglect, were predictive of changes in DNMT and HMTh3k9 activity, H3K9m3 levels, BDNF mRNA expression, and BDNF levels. These findings were observed in all our samples and, in some cases, among BD patients. Emotional abuse was the main childhood maltreatment subtype associated with epigenetic alterations in BD. Our results elucidate some mechanisms by which childhood maltreatment can alter epigenetic and neurotrophic markers. Especially in BD subjects, our results suggest childhood maltreatment per se is not a direct cause for epigenetic alterations. In another way, we suppose that the effect of childhood maltreatment could be cumulative and interact with other factors associated with the pathophysiology of BD.
Collapse
Affiliation(s)
- Taise Possamai-Della
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jefté Peper-Nascimento
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Roger B Varela
- Neuromodulation and Novel Therapeutics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Thiani Daminelli
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gabriel R Fries
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Luciane B Ceretta
- Graduate Program in Collective Health, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Mario F Juruena
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - João Quevedo
- Center for Interventional Psychiatry, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, USA
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
4
|
Zhang L, Li J. Unlocking the secrets: the power of methylation-based cfDNA detection of tissue damage in organ systems. Clin Epigenetics 2023; 15:168. [PMID: 37858233 PMCID: PMC10588141 DOI: 10.1186/s13148-023-01585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Detecting organ and tissue damage is essential for early diagnosis, treatment decisions, and monitoring disease progression. Methylation-based assays offer a promising approach, as DNA methylation patterns can change in response to tissue damage. These assays have potential applications in early detection, monitoring disease progression, evaluating treatment efficacy, and assessing organ viability for transplantation. cfDNA released into the bloodstream upon tissue or organ injury can serve as a biomarker for damage. The epigenetic state of cfDNA, including DNA methylation patterns, can provide insights into the extent of tissue and organ damage. CONTENT Firstly, this review highlights DNA methylation as an extensively studied epigenetic modification that plays a pivotal role in processes such as cell growth, differentiation, and disease development. It then presents a variety of highly precise 5-mC methylation detection techniques that serve as powerful tools for gaining profound insights into epigenetic alterations linked with tissue damage. Subsequently, the review delves into the mechanisms underlying DNA methylation changes in organ and tissue damage, encompassing inflammation, oxidative stress, and DNA damage repair mechanisms. Next, it addresses the current research status of cfDNA methylation in the detection of specific organ tissues and organ damage. Finally, it provides an overview of the multiple steps involved in identifying specific methylation markers associated with tissue and organ damage for clinical trials. This review will explore the mechanisms and current state of research on cfDNA methylation-based assay detecting organ and tissue damage, the underlying mechanisms, and potential applications in clinical practice.
Collapse
Affiliation(s)
- Lijing Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, No. 1 Dahua Road, Dongdan, Beijing, 100730, People's Republic of China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing Hospital, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, No. 1 Dahua Road, Dongdan, Beijing, 100730, People's Republic of China.
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing Hospital, Beijing, People's Republic of China.
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China.
| |
Collapse
|
5
|
Bracht JR, Vieira‐Potter VJ, De Souza Santos R, Öz OK, Palmer BF, Clegg DJ. The role of estrogens in the adipose tissue milieu. Ann N Y Acad Sci 2019; 1461:127-143. [DOI: 10.1111/nyas.14281] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | - Orhan K. Öz
- Department of RadiologyUniversity of Texas Southwestern Medical Center Dallas Texas
| | - Biff F. Palmer
- Department of MedicineUniversity of Texas Southwestern Medical Center Dallas Texas
| | - Deborah J. Clegg
- College of Nursing and Health ProfessionsDrexel University Philadelphia Pennsylvania
| |
Collapse
|
6
|
Zhang C, Rong H. Genetic Advance in Depressive Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1180:19-57. [PMID: 31784956 DOI: 10.1007/978-981-32-9271-0_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Major depressive disorder (MDD) and bipolar disorder (BPD) are both chronic, severe mood disorder with high misdiagnosis rate, leading to substantial health and economic burdens to patients around the world. There is a high misdiagnosis rate of bipolar depression (BD) just based on symptomology in depressed patients whose previous manic or mixed episodes have not been well recognized. Therefore, it is important for psychiatrists to identify these two major psychiatric disorders. Recently, with the accumulation of clinical sample sizes and the advances of methodology and technology, certain progress in the genetics of major depression and bipolar disorder has been made. This article reviews the candidate genes for MDD and BD, genetic variation loci, chromosome structural variation, new technologies, and new methods.
Collapse
Affiliation(s)
- Chen Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Han Rong
- Department of Psychiatry, Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Gettler LT, Lin DTS, Miegakanda V, Lew-Levy S, Eick GN, Snodgrass JJ, MacIsaac JL, Ramadori KE, Kobor MS, Boyette AH. Epigenetic aging in children from a small-scale farming society in The Congo Basin: Associations with child growth and family conflict. Dev Psychobiol 2019; 62:138-153. [PMID: 31724171 DOI: 10.1002/dev.21935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022]
Abstract
Developmental environments influence individuals' long-term health trajectories, and there is increasing emphasis on understanding the biological pathways through which this occurs. Epigenetic aging evaluates DNA methylation at a suite of distinct CpG sites in the genome, and epigenetic age acceleration (EAA) is linked to heightened chronic morbidity and mortality risks in adults. Consequently, EAA provides insights on trajectories of biological aging, which early life experiences may help shape. However, few studies have measured correlates of children's epigenetic aging, especially outside of the U.S. and Europe. In particular, little is known about how children's growth and development relate to EAA in ecologies in which energetic and pathogenic stressors are commonplace. We studied EAA from dried blood spots among Bondongo children (n = 54) residing in a small-scale, fisher-farmer society in a remote region of the Republic of the Congo. Here, infectious disease burdens and their resultant energy demands are high. Children who were heavier for height or taller for age, respectively, exhibited greater EAA, including intrinsic EAA, which is considered to measure EAA internal to cells. Furthermore, we found that children in families with more conflict between parents had greater intrinsic EAA. These results suggest that in contexts in which limited energy must be allocated to competing demands, more investment in growth may coincide with greater EAA, which parallels findings in European children who do not face similar energetic constraints. Our findings also indicate that associations between adverse family environments and greater intrinsic EAA were nonetheless observable but only after adjustment for covariates relevant to the energetically and immunologically demanding nature of the local ecology.
Collapse
Affiliation(s)
- Lee T Gettler
- Department of Anthropology, University of Notre Dame, Notre Dame, IN, USA.,Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA.,William J. Shaw Center for Children and Families, University of Notre Dame, South Bend, IN, USA
| | - David T S Lin
- BC Children's Hospital Research, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Valchy Miegakanda
- Institut National de Santé Publique, Brazzaville, Republic of the Congo
| | - Sheina Lew-Levy
- Department of Psychology, Simon Fraser University, Burnaby, Canada
| | - Geeta N Eick
- Department of Anthropology, University of Oregon, Eugene, OR, USA
| | - J Josh Snodgrass
- Department of Anthropology, University of Oregon, Eugene, OR, USA
| | - Julia L MacIsaac
- BC Children's Hospital Research, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Katia E Ramadori
- BC Children's Hospital Research, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Michael S Kobor
- BC Children's Hospital Research, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Adam H Boyette
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
8
|
Baquedano MS, Belgorosky A. Human Adrenal Cortex: Epigenetics and Postnatal Functional Zonation. Horm Res Paediatr 2018; 89:331-340. [PMID: 29742513 DOI: 10.1159/000487995] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/27/2018] [Indexed: 11/19/2022] Open
Abstract
The human adrenal cortex, involved in adaptive responses to stress, fluid homeostasis, and secondary sexual characteristics, arises from a tightly regulated development of a zone and cell type-specific secretory pattern. However, the molecular mechanisms governing adrenal zonation, particularly postnatal zona reticularis development, which produce adrenal androgens in a lifetime-specific manner, remain poorly understood. Epigenetic events, including DNA and histone modifications as well as regulation by noncoding RNAs, are crucial in establishing or maintaining the expression pattern of specific genes and thus contribute to the stability of a specific differentiation state. Emerging evidence points to epigenetics as another regulatory layer that could contribute to establishing the adrenal zone-specific pattern of enzyme expression. Here, we outline the developmental milestones of the human adrenal cortex, focusing on current advances and understanding of epigenetic regulation of postnatal functional zonation. Numerous questions remain to be addressed emphasizing the need for additional investigations to elucidate the role of epigenetics in the human adrenal gland. Ultimately, improved understanding of the epigenetic factors involved in adrenal development and function could lead to novel therapeutic interventions.
Collapse
|
9
|
Mateen BA, Hill CS, Biddie SC, Menon DK. DNA Methylation: Basic Biology and Application to Traumatic Brain Injury. J Neurotrauma 2017; 34:2379-2388. [DOI: 10.1089/neu.2017.5007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Bilal A. Mateen
- Division of Medicine, University College London, London, United Kingdom
| | - Ciaran S. Hill
- John van Geest Centre for Brain Repair, School of Clinical Medicine, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Simon C. Biddie
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - David K. Menon
- John van Geest Centre for Brain Repair, School of Clinical Medicine, Addenbrookes Hospital, Cambridge, United Kingdom
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
10
|
Ito F, Yamada Y, Shigemitsu A, Akinishi M, Kaniwa H, Miyake R, Yamanaka S, Kobayashi H. Role of Oxidative Stress in Epigenetic Modification in Endometriosis. Reprod Sci 2017; 24:1493-1502. [PMID: 28443478 DOI: 10.1177/1933719117704909] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aberrant DNA methylation and histone modification are associated with an increased risk of reproductive disorders such as endometriosis. However, a cause-effect relationship between epigenetic mechanisms and endometriosis development has not been fully determined. This review provides current information based on oxidative stress in epigenetic modification in endometriosis. This article reviews the English-language literature on epigenetics, DNA methylation, histone modification, and oxidative stress associated with endometriosis in an effort to identify epigenetic modification that causes a predisposition to endometriosis. Oxidative stress, secondary to the influx of hemoglobin, heme, and iron during retrograde menstruation, is involved in the expression of CpG demethylases, ten-eleven translocation, and jumonji (JMJ). Ten-eleven translocation and JMJ recognize a wide range of endogenous DNA methyltransferases (DNMTs). The increased expression levels of DNMTs may be involved in the subsequent downregulation of the decidualization-related genes. This review supports the hypothesis that there are at least 2 distinct phases of epigenetic modification in endometriosis: the initial wave of iron-induced oxidative stress would be followed by the second big wave of epigenetic modulation of endometriosis susceptibility genes. We summarize the recent advances in our understanding of the underlying epigenetic mechanisms focusing on oxidative stress in endometriosis.
Collapse
Affiliation(s)
- Fuminori Ito
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Yuki Yamada
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Aiko Shigemitsu
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Mika Akinishi
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Hiroko Kaniwa
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Ryuta Miyake
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Shoichiro Yamanaka
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Hiroshi Kobayashi
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| |
Collapse
|
11
|
Fedeli D, Montani M, Bordoni L, Galeazzi R, Nasuti C, Correia-Sá L, Domingues VF, Jayant M, Brahmachari V, Massaccesi L, Laudadio E, Gabbianelli R. In vivo and in silico studies to identify mechanisms associated with Nurr1 modulation following early life exposure to permethrin in rats. Neuroscience 2017; 340:411-423. [DOI: 10.1016/j.neuroscience.2016.10.071] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 10/24/2016] [Accepted: 10/29/2016] [Indexed: 01/16/2023]
|
12
|
Liu W. Epigenetics in Schistosomes: What We Know and What We Need Know. Front Cell Infect Microbiol 2016; 6:149. [PMID: 27891322 PMCID: PMC5104962 DOI: 10.3389/fcimb.2016.00149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/28/2016] [Indexed: 01/26/2023] Open
Abstract
Schistosomes are metazoan parasites and can cause schistosomiasis. Epigenetic modifications include DNA methylation, histone modifications and non-coding RNAs. Some enzymes involved in epigenetic modification and microRNA processes have been developed as drugs to treat the disease. Compared with humans and vertebrates, an in-depth understanding of epigenetic modifications in schistosomes is starting to be realized. DNA methylation, histone modifications and non-coding RNAs play important roles in the development and reproduction of schistosomes and in interactions between the host and schistosomes. Therefore, exploring and investigating the epigenetic modifications in schistosomes will facilitate drug development and therapy for schistosomiasis. Here, we review the role of epigenetic modifications in the development, growth and reproduction of schistosomes, and the interactions between the host and schistosome. We further discuss potential epigenetic targets for drug discovery for the treatment of schistosomiasis.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science Shanghai, China
| |
Collapse
|
13
|
ALS and FTD: an epigenetic perspective. Acta Neuropathol 2016; 132:487-502. [PMID: 27282474 DOI: 10.1007/s00401-016-1587-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/17/2016] [Accepted: 06/02/2016] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two fatal neurodegenerative diseases seen in comorbidity in up to 50 % of cases. Despite tremendous efforts over the last two decades, no biomarkers or effective therapeutics have been identified to prevent, decelerate, or stop neuronal death in patients. While the identification of multiple mutations in more than two dozen genes elucidated the involvement of several mechanisms in the pathogenesis of both diseases, identifying the hexanucleotide repeat expansion in C9orf72, the most common genetic abnormality in ALS and FTD, opened the door to the discovery of several novel pathogenic biological routes, including chromatin remodeling and transcriptome alteration. Epigenetic processes regulate DNA replication and repair, RNA transcription, and chromatin conformation, which in turn further dictate transcriptional regulation and protein translation. Transcriptional and post-transcriptional epigenetic regulation is mediated by enzymes and chromatin-modifying complexes that control DNA methylation, histone modifications, and RNA editing. While the alteration of DNA methylation and histone modification has recently been reported in ALS and FTD, the assessment of epigenetic involvement in both diseases is still at an early stage, and the involvement of multiple epigenetic players still needs to be evaluated. As the epigenome serves as a way to alter genetic information not only during aging, but also following environmental signals, epigenetic mechanisms might play a central role in initiating ALS and FTD, especially for sporadic cases. Here, we provide a review of what is currently known about altered epigenetic processes in both ALS and FTD and discuss potential therapeutic strategies targeting epigenetic mechanisms. As approximately 85 % of ALS and FTD cases are still genetically unexplained, epigenetic therapeutics explored for other diseases might represent a profitable direction for the field.
Collapse
|
14
|
Fries GR, Li Q, McAlpin B, Rein T, Walss-Bass C, Soares JC, Quevedo J. The role of DNA methylation in the pathophysiology and treatment of bipolar disorder. Neurosci Biobehav Rev 2016; 68:474-488. [PMID: 27328785 DOI: 10.1016/j.neubiorev.2016.06.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/03/2016] [Accepted: 06/12/2016] [Indexed: 12/31/2022]
Abstract
Bipolar disorder (BD) is a multifactorial illness thought to result from an interaction between genetic susceptibility and environmental stimuli. Epigenetic mechanisms, including DNA methylation, can modulate gene expression in response to the environment, and therefore might account for part of the heritability reported for BD. This paper aims to review evidence of the potential role of DNA methylation in the pathophysiology and treatment of BD. In summary, several studies suggest that alterations in DNA methylation may play an important role in the dysregulation of gene expression in BD, and some actually suggest their potential use as biomarkers to improve diagnosis, prognosis, and assessment of response to treatment. This is also supported by reports of alterations in the levels of DNA methyltransferases in patients and in the mechanism of action of classical mood stabilizers. In this sense, targeting specific alterations in DNA methylation represents exciting new treatment possibilities for BD, and the 'plastic' characteristic of DNA methylation accounts for a promising possibility of restoring environment-induced modifications in patients.
Collapse
Affiliation(s)
- Gabriel R Fries
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), 1941 East Rd, 77054, Houston, TX, USA.
| | - Qiongzhen Li
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), 1941 East Rd, 77054, Houston, TX, USA
| | - Blake McAlpin
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), 1941 East Rd, 77054, Houston, TX, USA
| | - Theo Rein
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
| | - Consuelo Walss-Bass
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), 1941 East Rd, 77054, Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Jair C Soares
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Joao Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), 1941 East Rd, 77054, Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| |
Collapse
|
15
|
Zhao C, Li P, Zhang L, Wang B, Xiao L, Guo F, Wei Y. An Observational Study on Aberrant Methylation of Runx3 With the Prognosis in Chronic Atrophic Gastritis Patients. Medicine (Baltimore) 2016; 95:e3356. [PMID: 27196446 PMCID: PMC4902388 DOI: 10.1097/md.0000000000003356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The aim of this study is to discuss whether the methylation levels of Runx3 could be used as the early biomarker for predicting the prognosis in chronic atrophic gastritis (CAG) patients. A total of 200 subjects including 60 controls without CAG (Group 1), 70 patients with mild CAG (Group 2), and 70 patients with moderate and severe CAG (Group 3) were recruited for this cross-sectional investigation in the Department of Gastroenterology in Daqing Oilfield General Hospital from July 2013 to May 2014. The MlALDI-TOF-MS was used to measure the methylation levels of Runx3 in all of the subjects. Real-time quantitative reverse transcription polymerase chain reaction and western blotting were chosen to determine the expression levels of Runx3. The correlations between methylation levels of Runx3 among these CAG patients and their prognosis were shown by logistic regression models. The results demonstrated that the methylation levels of CpG13, CpG14, and CpG15 in Runx3 were higher in Group 3 than those in Groups 1 and 2 (P <0.05), whereas the mRNA and protein expression levels of Runx3 were lower in Group 3 than those in Groups 1 and 2 (P <0.05). There were significantly negative correlations between the methylation levels of Runx3 with its expression and the healing prognosis of CAG patients. In brief, this study proved that the hypermethylation modifications of CpG13, CpG14, and CpG15 in the promoter region of Runx3 could result in the down regulation of Runx3 expression to affect the prognosis of CAG. So the methylation levels of these CpG sites in Runx3 in the peripheral blood can be used as the biomarker for predicting the healing prognosis of CAG patients.
Collapse
Affiliation(s)
- Chunna Zhao
- From Department of Gastroenterology (CZ, LZ, BW, LX, FG, YW), Daqing Oilfield General Hospital, Daqing City, Heilongjiang Province; Department of Nutrition Research Laboratory (PL), Beijing, Children's Hospital, Beijing City, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Hao M, Zhao W, Zhang L, Wang H, Yang X. Low folate levels are associated with methylation-mediated transcriptional repression of miR-203 and miR-375 during cervical carcinogenesis. Oncol Lett 2016; 11:3863-3869. [PMID: 27313708 DOI: 10.3892/ol.2016.4449] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 01/22/2016] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to investigate the correlation between a lack of folic acid and the abnormal expression of microRNA (miR)-203 and miR-375 in cervical cancer. In total, 60 tissue samples of cervical intraepithelial neoplasia (CIN) or stage IA-IIA cervical cancer (study group), and 30 samples without soluble interleukin or malignancy (control group) were examined. The expression of miR-203 and miR-375 was detected using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and the difference in expression levels was quantified using the 2-ΔΔCq method. In addition, CaSki cervical cancer cells were cultured in vitro and treated with various concentrations of folic acid. The DNA methylation states of miR-203 and miR-375 were subsequently detected by methylation-specific PCR, and the expression levels were evaluated using RT-PCR. miR-203 and miR-375 were significantly downregulated in CIN and cervical cancer tissues, compared with the control group. There was a marked difference in terms of the expression levels of miR-375 between the two groups (P<0.05). In CaSki cells, as the concentration of folic acid increased, the positive rate of DNA methylation of miR-203 and miR-375 decreased, while the expression levels of miR-203 and miR-375 demonstrated a gradual increase, which indicated that the latter two parameters were negatively correlated (P<0.05). Compared with normal cervical tissue, the expression levels of miR-203 and miR-375 were downregulated in CIN and cervical cancer. Methylation of these two miRs was apparent in CaSki cells, and was associated with a lack of folic acid. Therefore, reduced levels of folic acid, leading to increased methylation of miR-203 and miR-375, may be significant events during cervical carcinogenesis.
Collapse
Affiliation(s)
- Min Hao
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Weihong Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Lili Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Honghong Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xin Yang
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
17
|
Georgel PT. The danger of epigenetics misconceptions (epigenetics and stuff…). Biochem Cell Biol 2015; 93:626-9. [DOI: 10.1139/bcb-2015-0091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Within the past two decades, the fields of chromatin structure and function and transcription regulation research started to fuse and overlap, as evidence mounted to support a very strong regulatory role in gene expression that was associated with histone post-translational modifications, DNA methylation, as well as various chromatin-associated proteins (the pillars of the “Epigenetics” building). The fusion and convergence of these complementary fields is now often simply referred to as “Epigenetics”. During these same 20 years, numerous new research groups have started to recognize the importance of chromatin composition, conformation, and its plasticity. However, as the field started to grow exponentially, its growth came with the spreading of several important misconceptions, which have unfortunately led to improper or hasty conclusions. The goal of this short “opinion” piece is to attempt to minimize future misinterpretations of experimental results and ensure that the right sets of experiment are used to reach the proper conclusion, at least as far as epigenetic mechanisms are concerned.
Collapse
Affiliation(s)
- Philippe T. Georgel
- Department of Biological Sciences, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA
- Cell Differentiation and Development Center, Marshall University, Huntington, WV 25755, USA
- Department of Biochemistry and Microbiology, Marshall University School of Medicine, Huntington, WV 25755, USA
| |
Collapse
|
18
|
Codocedo JF, Inestrosa NC. Environmental control of microRNAs in the nervous system: Implications in plasticity and behavior. Neurosci Biobehav Rev 2015; 60:121-38. [PMID: 26593111 DOI: 10.1016/j.neubiorev.2015.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/24/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023]
Abstract
The discovery of microRNAs (miRNAs) a little over 20 years ago was revolutionary given that miRNAs are essential to numerous physiological and physiopathological processes. Currently, several aspects of the biogenic process of miRNAs and of the translational repression mechanism exerted on their targets mRNAs are known in detail. In fact, the development of bioinformatics tools for predicting miRNA targets has established that miRNAs have the potential to regulate almost all known biological processes. Therefore, the identification of the signals and molecular mechanisms that regulate miRNA function is relevant to understanding the role of miRNAs in both pathological and adaptive processes. Recently, a series of studies has focused on miRNA expression in the brain, establishing that their levels are altered in response to various environmental factors (EFs), such as light, sound, odorants, nutrients, drugs and stress. In this review, we discuss how exposure to various EFs modulates the expression and function of several miRNAs in the nervous system and how this control determines adaptation to their environment, behavior and disease state.
Collapse
Affiliation(s)
- Juan F Codocedo
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia; Centro UC Síndrome de Down, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
19
|
Epigenetic mechanisms: An emerging role in pathogenesis and its therapeutic potential in systemic sclerosis. Int J Biochem Cell Biol 2015; 67:92-100. [DOI: 10.1016/j.biocel.2015.05.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/23/2015] [Accepted: 05/27/2015] [Indexed: 11/18/2022]
|
20
|
Perks CM, Holly JM. Epigenetic regulation of insulin-like growth factor binding protein-3 (IGFBP-3) in cancer. J Cell Commun Signal 2015; 9:159-66. [PMID: 25920743 DOI: 10.1007/s12079-015-0294-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/21/2015] [Indexed: 12/17/2022] Open
Abstract
Epigenetics refers to heritable changes in gene expression that are independent of alterations in DNA sequence. It is now accepted that disruption of epigenetic mechanisms plays a key role in the pathogenesis of cancer: culminating in altered gene function and malignant cellular transformation. DNA methylation and histone modifications are the most widely studied changes but non-coding RNAs such as miRNAs are also considered part of the epigenetic machinery. The insulin-like growth factor (IGF) axis is composed of two ligands, IGF-I and -II, their receptors and six high affinity IGF binding proteins (IGFBPs). The IGF axis plays a key role in cancer development and progression. As IGFBP genes have consistently been identified among the most common to be aberrantly altered in tumours, this review will focus on epigenetic regulation of IGFBP-3 in cancer for which the majority of evidence has been obtained.
Collapse
Affiliation(s)
- Claire M Perks
- IGF & Metabolic Endocrinology Group, School of Clinical Sciences, University of Bristol, Learning and Research Building, Southmead Hospital, Bristol, BS10 5NB, UK,
| | | |
Collapse
|