1
|
Koźlik M, Harpula J, Chuchra PJ, Nowak M, Wojakowski W, Gąsior P. Drug-Eluting Stents: Technical and Clinical Progress. Biomimetics (Basel) 2023; 8:biomimetics8010072. [PMID: 36810403 PMCID: PMC9944483 DOI: 10.3390/biomimetics8010072] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Drug-eluting stents (DES) demonstrated superior efficacy when compared to bare metal stents and plain-old balloon angioplasty and are nowadays used in almost all percutaneous revascularization procedures. The design of the stent platforms is constantly improving to maximize its efficacy and safety. Constant development of DES includes adoption of new materials used for scaffold production, new design types, improved overexpansion abilities, new polymers coating and, finally, improved antiproliferative agents. Especially nowadays, with the immense number of available DES platforms, it is crucial to understand how different aspects of stents impact the effect of their implantation, as subtle differences between various stent platforms could impact the most important issue-clinical outcomes. This review discusses the current status of coronary stents and the impact of stent material, strut design and coating techniques on cardiovascular outcomes.
Collapse
Affiliation(s)
- Maciej Koźlik
- Division of Cardiology and Structural Heart Disease, Medical University of Silesia, 40-635 Katowice, Poland
- Correspondence:
| | - Jan Harpula
- Division of Cardiology and Structural Heart Disease, Medical University of Silesia, 40-635 Katowice, Poland
| | - Piotr J. Chuchra
- Students’ Scientific Society, Department of Cardiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-635 Katowice, Poland
| | - Magdalena Nowak
- Students’ Scientific Society, Department of Cardiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-635 Katowice, Poland
| | - Wojciech Wojakowski
- Division of Cardiology and Structural Heart Disease, Medical University of Silesia, 40-635 Katowice, Poland
| | - Paweł Gąsior
- Division of Cardiology and Structural Heart Disease, Medical University of Silesia, 40-635 Katowice, Poland
| |
Collapse
|
2
|
Magnesium Bioresorbable Scaffold (BRS) Magmaris vs Biodegradable Polymer DES Ultimaster in NSTE-ACS Population-12-Month Clinical Outcome. J Interv Cardiol 2022; 2022:5223317. [PMID: 36605917 PMCID: PMC9794423 DOI: 10.1155/2022/5223317] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Background Percutaneous coronary intervention (PCI) in the acute coronary syndrome (ACS) setting is associated with a greater probability of device failure. The currently ongoing development of new scaffold technologies has concentrated an effort on improving the PCI outcomes, including the use of new biodegradable materials. This pilot study evaluates the performance of a magnesium bioresorbable scaffold (Magmaris, Biotronik, Germany) in comparison to the sirolimus-eluting bioresorbable polymer stents (BP-SES) (Ultimaster, Terumo, Japan) in the NSTE-ACS setting. Methods The population of this pilot comprised 362 patients assigned to one of two arms (193-Magmaris vs 169-Ultimaster). The data regarding the primary outcome comprised of death from cardiac causes, myocardial infarction, and stent thrombosis, along with target-lesion failure (TLF) and other clinical events was collected in the 1-yearfollow-up. Results There were no statistically significant differences in clinical outcomes in the short term (30 days) or in the 1-yearfollow-up between both groups. Conclusion At 12 months, there were no statistically significant differences between the Magmaris and Ultimaster for composed endpoints or the TLF.
Collapse
|
3
|
Wang Y, Li G, Yang L, Luo R, Guo G. Development of Innovative Biomaterials and Devices for the Treatment of Cardiovascular Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201971. [PMID: 35654586 DOI: 10.1002/adma.202201971] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Cardiovascular diseases have become the leading cause of death worldwide. The increasing burden of cardiovascular diseases has become a major public health problem and how to carry out efficient and reliable treatment of cardiovascular diseases has become an urgent global problem to be solved. Recently, implantable biomaterials and devices, especially minimally invasive interventional ones, such as vascular stents, artificial heart valves, bioprosthetic cardiac occluders, artificial graft cardiac patches, atrial shunts, and injectable hydrogels against heart failure, have become the most effective means in the treatment of cardiovascular diseases. Herein, an overview of the challenges and research frontier of innovative biomaterials and devices for the treatment of cardiovascular diseases is provided, and their future development directions are discussed.
Collapse
Affiliation(s)
- Yunbing Wang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Li Yang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Gaoyang Guo
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| |
Collapse
|
4
|
Hassan S, Najabat Ali M, Ghafoor B. An appraisal of polymers of DES technology and their impact on drug release kinetics. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2090941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sadia Hassan
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Murtaza Najabat Ali
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Bakhtawar Ghafoor
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
5
|
Cobalt–Chromium Dental Alloys: Metal Exposures, Toxicological Risks, CMR Classification, and EU Regulatory Framework. CRYSTALS 2020. [DOI: 10.3390/cryst10121151] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During the 20th century, metal alloys have assumed an important role as restorative materials. Among existing examples, cobalt–chromium (Co–Cr) alloys increasingly began to be used in medicine and especially in dentistry. Their success is mainly due to their mechanical properties such as stiffness, strength and corrosion resistance, thus allowing a high biocompatibility. There are quite meaningful data on the corrosion and toxicity of Co–Cr alloys for their use in restorative materials such as dental prostheses. Toxicological studies following Co and Cr exposures in the oral cavity are more difficult to conduct because there are many different situations leading to the release of metal ions and wear particles. Furthermore, the links between exposure and the appearance of local or systemic toxicity are not automatic. Since 2017, the European Union (EU) regulatory framework for Co–Cr alloys has been undergoing profound changes. A new EU Medical Devices Regulation (MDR) (2017/745) will be applied in May 2021 with the need to consider that Co metal is a new carcinogenic, mutagenic and toxic to reproduction (CMR) substance. On 18 February 2020, the 14th Adaptation to Technical Progress (ATP14) to the Classification, Labelling and Packaging (CLP) regulation was published, including the harmonised classification for Co metal as a CMR 1B substance. In this context, the use of Co might be forbidden if the medical devices are invasive and as soon as they include more than 0.1% (m/m) Co. This review provides a specific overview on Co–Cr dental alloys in terms of metal ions and wear particles release, toxicological risks, and the actual and new EU regulatory framework.
Collapse
|
6
|
Ono M, Takahashi K, Gao C, Kawashima H, Wu X, Hara H, Wang R, Wykrzykowska JJ, Piek JJ, Sharif F, Serruys PW, Wijns W, Onuma Y. The state-of-the-art coronary stent with crystallized sirolimus: the MiStent technology and its clinical program. Future Cardiol 2020; 17:593-607. [PMID: 33258702 DOI: 10.2217/fca-2020-0063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Drug-eluting stents (DES) have been developed over recent decades and the implantation of DES is the standard of care in contemporary percutaneous coronary intervention for patients with coronary artery disease. The MiStent sirolimus-eluting stent has several unique features; ultra-thin (64 μm) struts, a bioresorbable polymer and a controlled drug release from microcrystalline sirolimus as a reservoir embedded in the vessel wall. Results of recent clinical trials demonstrated the potential performance of this state-of-the-art DES. In the present review, we provide an overview of the development of DES, in particular the design and performance of the novel MiStent sirolimus-eluting stent from technological and clinical points of view and discuss the potentials of this new type of DES.
Collapse
Affiliation(s)
- Masafumi Ono
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Kuniaki Takahashi
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Chao Gao
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland.,Department of Cardiology, Radboud University, Nijmegen, The Netherlands
| | - Hideyuki Kawashima
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Xinlei Wu
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland.,Institute of Cardiovascular Development & Translational Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hironori Hara
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Rutao Wang
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland.,Department of Cardiology, Radboud University, Nijmegen, The Netherlands
| | - Joanna J Wykrzykowska
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan J Piek
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Faisal Sharif
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Patrick W Serruys
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | - William Wijns
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Yoshinobu Onuma
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| |
Collapse
|