1
|
Lensch V, Johnson JA, Kiessling LL. Glycoconjugate vaccines: platforms and adjuvants for directed immunity. Glycobiology 2024; 34:cwae092. [PMID: 39593193 PMCID: PMC11604072 DOI: 10.1093/glycob/cwae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/03/2024] [Accepted: 11/23/2024] [Indexed: 11/28/2024] Open
Abstract
Central to immune recognition is the glycocalyx, a glycan-rich coat on all cells that plays a crucial role in interactions that enable pathogen detection and activation of immune defenses. Pathogens and cancerous cells often display distinct glycans on their surfaces, making these saccharide antigens prime targets for vaccine development. However, carbohydrates alone generally serve as poor immunogens due to their often weak binding affinities, inability to effectively recruit T cell help, and reliance on adjuvants to iboost immune activation. The introduction of glycoconjugate vaccines, initially involving the covalent coupling of carbohydrate antigens to carrier proteins, marked a pivotal advancement by facilitating neutralizing antibody production against carbohydrate targets. Despite successes in generating glycoconjugate vaccines against certain bacterial diseases, challenges persist in creating effective vaccines against numerous intracellular pathogens and non-communicable diseases such as cancer. In this review, we highlight new developments in conjugate vaccine platforms aim to overcome these limitations by optimizing the display of glycan and T cell epitopes as well as incorporating defined carbohydrate adjuvants to direct tailored immune responses. These advancements promise to improve the effectiveness of carbohydrate-based vaccines and broaden their coverage against a wide range of diseases.
Collapse
Affiliation(s)
- Valerie Lensch
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
- Koch Institute for Integrative Cancer Research,Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, United States
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, United States
| | - Laura L Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
- Koch Institute for Integrative Cancer Research,Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, United States
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, United States
| |
Collapse
|
2
|
Lehri B, Atkins E, Scott TA, Abouelhadid S, Wren BW, Cuccui J. Investigation into the efficiency of diverse N-linking oligosaccharyltransferases for glycoengineering using a standardised cell-free assay. Microb Biotechnol 2024; 17:e14480. [PMID: 38858807 PMCID: PMC11164674 DOI: 10.1111/1751-7915.14480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/26/2024] [Accepted: 05/03/2024] [Indexed: 06/12/2024] Open
Abstract
The application of bacterial oligosaccharyltransferases (OSTs) such as the Campylobacter jejuni PglB for glycoengineering has attracted considerable interest in glycoengineering and glycoconjugate vaccine development. However, PglB has limited specificity for glycans that can be transferred to candidate proteins, which along with other factors is dependent on the reducing end sugar of glycans. In this study, we developed a cell-free glycosylation assay that offers the speed and simplicity of a 'yes' or 'no' determination. Using the assay, we tested the activity of eleven PglBs from Campylobacter species and more distantly related bacteria. The following assorted glycans with diverse reducing end sugars were tested for transfer, including Streptococcus pneumoniae capsule serotype 4, Salmonella enterica serovar Typhimurium O antigen (B1), Francisella tularensis O antigen, Escherichia coli O9 antigen and Campylobacter jejuni heptasaccharide. Interestingly, while PglBs from the same genus showed high activity, whereas divergent PglBs differed in their transfer of glycans to an acceptor protein. Notably for glycoengineering purposes, Campylobacter hepaticus and Campylobacter subantarcticus PglBs showed high glycosylation efficiency, with C. hepaticus PglB potentially being useful for glycoconjugate vaccine production. This study demonstrates the versatility of the cell-free assay in rapidly assessing an OST to couple glycan/carrier protein combinations and lays the foundation for future screening of PglBs by linking amino acid similarity to glycosyltransferase activity.
Collapse
Affiliation(s)
- Burhan Lehri
- Department of Infection BiologyLondon School of Hygiene and Tropical MedicineLondonUK
| | - Elizabeth Atkins
- Department of Infection BiologyLondon School of Hygiene and Tropical MedicineLondonUK
| | - Timothy A. Scott
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| | - Sherif Abouelhadid
- Department of Infection BiologyLondon School of Hygiene and Tropical MedicineLondonUK
| | - Brendan W. Wren
- Department of Infection BiologyLondon School of Hygiene and Tropical MedicineLondonUK
| | - Jon Cuccui
- Department of Infection BiologyLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
3
|
Aminov R, Aminova L. The role of the glycome in symbiotic host-microbe interactions. Glycobiology 2023; 33:1106-1116. [PMID: 37741057 PMCID: PMC10876039 DOI: 10.1093/glycob/cwad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023] Open
Abstract
Glycosylation plays a crucial role in many aspects of cell biology, including cellular and organismal integrity, structure-and-function of many glycosylated molecules in the cell, signal transduction, development, cancer, and in a number of diseases. Besides, at the inter-organismal level of interaction, a variety of glycosylated molecules are involved in the host-microbiota recognition and initiation of downstream signalling cascades depending on the outcomes of the glycome-mediated ascertainment. The role of glycosylation in host-microbe interactions is better elaborated within the context of virulence and pathogenicity in bacterial infection processes but the symbiotic host-microbe relationships also involve substantive glycome-mediated interactions. The works in the latter field have been reviewed to a much lesser extent, and the main aim of this mini-review is to compensate for this deficiency and summarise the role of glycomics in host-microbe symbiotic interactions.
Collapse
Affiliation(s)
- Rustam Aminov
- The School of Medicine, Medical Sciences and Nutrition, Foresterhill Campus, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | - Leila Aminova
- Midwest Bioprocessing Center, 801 W Main St, Peoria, IL, 61606-1877, United States
| |
Collapse
|
4
|
Liu Y, Li S, Guo Y, Li X, Zhu L, Wang H, Wu J, Pan C. Genetic Engineering of Klebsiella pneumoniae ATCC 25955 for Bioconjugate Vaccine Applications. Microorganisms 2023; 11:1321. [PMID: 37317295 DOI: 10.3390/microorganisms11051321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 06/16/2023] Open
Abstract
Vaccination is considered the most effective means to fight against the multidrug-resistant strains of Klebsiella pneumoniae. In recent years, a potential protein glycan coupling technology has been extensively used in the production of bioconjugated vaccines. Here, a series of glycoengineering strains derived from K. pneumoniae ATCC 25955 were designed for protein glycan coupling technology. The capsule polysaccharide biosynthesis gene cluster and the O-antigen ligase gene waaL were deleted via the CRISPR/Cas9 system to further weaken the virulence of host stains and block the unwanted endogenous glycan synthesis. Particularly, the SpyCatcher protein in the efficient protein covalent ligation system (SpyTag/SpyCatcher) was selected as the carrier protein to load the bacterial antigenic polysaccharides (O1 serotype), which could covalently bind to SpyTag-functionalized nanoparticles AP205 to form nanovaccines. Furthermore, two genes (wbbY and wbbZ) located in the O-antigen biosynthesis gene cluster were knocked out to change the O1 serotype of the engineered strain into the O2 serotype. Both KPO1-SC and KPO2-SC glycoproteins were successfully obtained as expected using our glycoengineering strains. Our work provides new insights into the design of nontraditional bacterial chassis for bioconjugate nanovaccines against infectious diseases.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Shulei Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Xin Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Hengliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Jun Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| |
Collapse
|
5
|
Liu Y, Pan C, Wang K, Guo Y, Sun Y, Li X, Sun P, Wu J, Wang H, Zhu L. Preparation of a Klebsiella pneumoniae conjugate nanovaccine using glycol-engineered Escherichia coli. Microb Cell Fact 2023; 22:95. [PMID: 37149632 PMCID: PMC10163571 DOI: 10.1186/s12934-023-02099-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/17/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Engineered strains of Escherichia coli have been used to produce bioconjugate vaccines using Protein Glycan Coupling Technology (PGCT). Nanovaccines have also entered the vaccine development arena with advances in nanotechnology and have been significantly developed, but chassis cells for conjugate nanovaccines have not been reported. RESULTS To facilitate nanovaccine preparation, a generic recombinant protein (SpyCather4573) was used as the acceptor protein for O-linked glycosyltransferase PglL, and a glycol-engineered Escherichia coli strain with these two key components (SC4573 and PglL) integrated in its genome was developed in this study. The targeted glycoproteins with antigenic polysaccharides produced by our bacterial chassis can be spontaneously bound to proteinous nanocarriers with surface exposed SpyTag in vitro to form conjugate nanovaccines. To improve the yields of the targeted glycoprotein, a series of gene cluster deletion experiments was carried out, and the results showed that the deletion of the yfdGHI gene cluster increased the expression of glycoproteins. Using the updated system, to the best of our knowledge, we report for the first time the successful preparation of an effective Klebsiella pneumoniae O1 conjugate nanovaccine (KPO1-VLP), with antibody titers between 4 and 5 (Log10) after triple immunization and up to 100% protection against virulent strain challenge. CONCLUSIONS Our results define a convenient and reliable framework for bacterial glycoprotein vaccine preparation that is flexible and versatile, and the genomic stability of the engineered chassis cells promises a wide range of applications for biosynthetic glycobiology research.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Kangfeng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
- College of Life Science, Hebei University, Baoding, 071002, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - YanGe Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Peng Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Jun Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Hengliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China.
| |
Collapse
|
6
|
Burns K, Dorfmueller HC, Wren BW, Mawas F, Shaw HA. Progress towards a glycoconjugate vaccine against Group A Streptococcus. NPJ Vaccines 2023; 8:48. [PMID: 36977677 PMCID: PMC10043865 DOI: 10.1038/s41541-023-00639-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/27/2023] [Indexed: 03/30/2023] Open
Abstract
The Group A Carbohydrate (GAC) is a defining feature of Group A Streptococcus (Strep A) or Streptococcus pyogenes. It is a conserved and simple polysaccharide, comprising a rhamnose backbone and GlcNAc side chains, further decorated with glycerol phosphate on approximately 40% GlcNAc residues. Its conservation, surface exposure and antigenicity have made it an interesting focus on Strep A vaccine design. Glycoconjugates containing this conserved carbohydrate should be a key approach towards the successful mission to build a universal Strep A vaccine candidate. In this review, a brief introduction to GAC, the main carbohydrate component of Strep A bacteria, and a variety of published carrier proteins and conjugation technologies are discussed. Components and technologies should be chosen carefully for building affordable Strep A vaccine candidates, particularly for low- and middle-income countries (LMICs). Towards this, novel technologies are discussed, such as the prospective use of bioconjugation with PglB for rhamnose polymer conjugation and generalised modules for membrane antigens (GMMA), particularly as low-cost solutions to vaccine production. Rational design of "double-hit" conjugates encompassing species specific glycan and protein components would be beneficial and production of a conserved vaccine to target Strep A colonisation without invoking an autoimmune response would be ideal.
Collapse
Affiliation(s)
- Keira Burns
- Vaccine Division, Scientific Research & Innovation Group, MHRA, Potters Bar, UK
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Helge C Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, Dow Street, Dundee, UK
| | - Brendan W Wren
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Fatme Mawas
- Vaccine Division, Scientific Research & Innovation Group, MHRA, Potters Bar, UK
| | - Helen A Shaw
- Vaccine Division, Scientific Research & Innovation Group, MHRA, Potters Bar, UK.
| |
Collapse
|
7
|
van der Put RM, Metz B, Pieters RJ. Carriers and Antigens: New Developments in Glycoconjugate Vaccines. Vaccines (Basel) 2023; 11:vaccines11020219. [PMID: 36851097 PMCID: PMC9962112 DOI: 10.3390/vaccines11020219] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Glycoconjugate vaccines have proven their worth in the protection and prevention of infectious diseases. The introduction of the Haemophilus influenzae type b vaccine is the prime example, followed by other glycoconjugate vaccines. Glycoconjugate vaccines consist of two components: the carrier protein and the carbohydrate antigen. Current carrier proteins are tetanus toxoid, diphtheria toxoid, CRM197, Haemophilus protein D and the outer membrane protein complex of serogroup B meningococcus. Carbohydrate antigens have been produced mainly by extraction and purification from the original host. However, current efforts show great advances in the development of synthetically produced oligosaccharides and bioconjugation. This review evaluates the advances of glycoconjugate vaccines in the last five years. We focus on developments regarding both new carriers and antigens. Innovative developments regarding carriers are outer membrane vesicles, glycoengineered proteins, new carrier proteins, virus-like particles, protein nanocages and peptides. With regard to conjugated antigens, we describe recent developments in the field of antimicrobial resistance (AMR) and ESKAPE pathogens.
Collapse
Affiliation(s)
- Robert M.F. van der Put
- Intravacc, P.O. Box 450, 3720 AL Bilthoven, The Netherlands
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
- Correspondence:
| | - Bernard Metz
- Intravacc, P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Roland J. Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
8
|
Hai R, Yang D, Zheng F, Wang W, Han X, Bode AM, Luo X. The emerging roles of HDACs and their therapeutic implications in cancer. Eur J Pharmacol 2022; 931:175216. [PMID: 35988787 DOI: 10.1016/j.ejphar.2022.175216] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 12/25/2022]
Abstract
Deregulation of protein post-translational modifications is intensively involved in the etiology of diseases, including degenerative diseases, inflammatory injuries, and cancers. Acetylation is one of the most common post-translational modifications of proteins, and the acetylation levels are controlled by two mutually antagonistic enzyme families, histone acetyl transferases (HATs) and histone deacetylases (HDACs). HATs loosen the chromatin structure by neutralizing the positive charge of lysine residues of histones; whereas HDACs deacetylate certain histones, thus inhibiting gene transcription. Compared with HATs, HDACs have been more intensively studied, particularly regarding their clinical significance. HDACs extensively participate in the regulation of proliferation, migration, angiogenesis, immune escape, and therapeutic resistance of cancer cells, thus emerging as critical targets for clinical cancer therapy. Compared to HATs, inhibitors of HDAC have been clinically used for cancer treatment. Here, we enumerate and integratethe mechanisms of HDAC family members in tumorigenesis and cancer progression, and address the new and exciting therapeutic implications of single or combined HDAC inhibitor (HDACi) treatment.
Collapse
Affiliation(s)
- Rihan Hai
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Deyi Yang
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Feifei Zheng
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Weiqin Wang
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Xing Han
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China; Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan, 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China.
| |
Collapse
|
9
|
Anderluh M, Berti F, Bzducha-Wróbel A, Chiodo F, Colombo C, Compostella F, Durlik K, Ferhati X, Holmdahl R, Jovanovic D, Kaca W, Lay L, Marinovic-Cincovic M, Marradi M, Ozil M, Polito L, Reina JJ, Reis CA, Sackstein R, Silipo A, Švajger U, Vaněk O, Yamamoto F, Richichi B, van Vliet SJ. Recent advances on smart glycoconjugate vaccines in infections and cancer. FEBS J 2021; 289:4251-4303. [PMID: 33934527 PMCID: PMC9542079 DOI: 10.1111/febs.15909] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/09/2021] [Accepted: 04/30/2021] [Indexed: 01/01/2023]
Abstract
Vaccination is one of the greatest achievements in biomedical research preventing death and morbidity in many infectious diseases through the induction of pathogen-specific humoral and cellular immune responses. Currently, no effective vaccines are available for pathogens with a highly variable antigenic load, such as the human immunodeficiency virus or to induce cellular T-cell immunity in the fight against cancer. The recent SARS-CoV-2 outbreak has reinforced the relevance of designing smart therapeutic vaccine modalities to ensure public health. Indeed, academic and private companies have ongoing joint efforts to develop novel vaccine prototypes for this virus. Many pathogens are covered by a dense glycan-coat, which form an attractive target for vaccine development. Moreover, many tumor types are characterized by altered glycosylation profiles that are known as "tumor-associated carbohydrate antigens". Unfortunately, glycans do not provoke a vigorous immune response and generally serve as T-cell-independent antigens, not eliciting protective immunoglobulin G responses nor inducing immunological memory. A close and continuous crosstalk between glycochemists and glycoimmunologists is essential for the successful development of efficient immune modulators. It is clear that this is a key point for the discovery of novel approaches, which could significantly improve our understanding of the immune system. In this review, we discuss the latest advancements in development of vaccines against glycan epitopes to gain selective immune responses and to provide an overview on the role of different immunogenic constructs in improving glycovaccine efficacy.
Collapse
Affiliation(s)
- Marko Anderluh
- Faculty of Pharmacy, Faculty of Pharmacy, Chair of Pharmaceutical Chemistry, University of Ljubljana, Slovenia
| | | | - Anna Bzducha-Wróbel
- Department of Biotechnology and Food Microbiology, Warsaw University of Life Sciences-SGGW, Warszawa, Poland
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands.,Institute of Biomolecular Chemistry (ICB), Italian National Research Council (CNR), Pozzuoli, Italy
| | - Cinzia Colombo
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Italy
| | - Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Katarzyna Durlik
- Department of Microbiology and Parasitology, Jan Kochanowski University, Kielce, Poland
| | - Xhenti Ferhati
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Dragana Jovanovic
- Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Serbia
| | - Wieslaw Kaca
- Department of Microbiology and Parasitology, Jan Kochanowski University, Kielce, Poland
| | - Luigi Lay
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Italy
| | - Milena Marinovic-Cincovic
- Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Serbia
| | - Marco Marradi
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Musa Ozil
- Faculty of Arts and Sciences, Department of Chemistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Laura Polito
- National Research Council, CNR-SCITEC, Milan, Italy
| | - Josè Juan Reina
- Departamento de Química Orgánica, Universidad de Málaga-IBIMA, Spain.,Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, Málaga, Spain
| | - Celso A Reis
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Portugal
| | - Robert Sackstein
- Department of Translational Medicine, Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Napoli, Italy
| | - Urban Švajger
- Blood Transfusion Center of Slovenia, Ljubljana, Slovenia
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Fumiichiro Yamamoto
- Immunohematology & Glycobiology Laboratory, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Barbara Richichi
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands
| |
Collapse
|
10
|
Dow JM, Mauri M, Scott TA, Wren BW. Improving protein glycan coupling technology (PGCT) for glycoconjugate vaccine production. Expert Rev Vaccines 2020; 19:507-527. [DOI: 10.1080/14760584.2020.1775077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jennifer Mhairi Dow
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Marta Mauri
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Brendan William Wren
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
11
|
Micoli F, Del Bino L, Alfini R, Carboni F, Romano MR, Adamo R. Glycoconjugate vaccines: current approaches towards faster vaccine design. Expert Rev Vaccines 2019; 18:881-895. [PMID: 31475596 DOI: 10.1080/14760584.2019.1657012] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Over the last decades, glycoconjugate vaccines have been proven to be a successful strategy to prevent infectious diseases. Many diseases remain to be controlled, especially in developing countries, and emerging antibiotic-resistant bacteria present an alarming public-health threat. The increasing complexity of future vaccines, and the need to accelerate development processes have triggered the development of faster approaches to glycoconjugate vaccines design. Areas covered: This review provides an overview of recent progress in glycoconjugation technologies toward faster vaccine design. Expert opinion: Among the different emerging approaches, glycoengineering has the potential to combine glycan assembly and conjugation to carrier systems (such as proteins or outer membrane vesicles) in one step, resulting in a simplified manufacturing process and fewer analytical controls. Chemical and enzymatic strategies, and their automation can facilitate glycoepitope identification for vaccine design. Other approaches, such as the liposomal encapsulation of polysaccharides, potentially enable fast and easy combination of numerous antigens in the same formulation. Additional progress is envisaged in the near future, and some of these systems still need to be further validated in humans. In parallel, new strategies are needed to accelerate the vaccine development process, including the associated clinical trials, up to vaccine release onto the market.
Collapse
Affiliation(s)
- Francesca Micoli
- Technology Platform, GSK Vaccines Institute for Global Health s.r.l , Siena , Italy
| | | | - Renzo Alfini
- Technology Platform, GSK Vaccines Institute for Global Health s.r.l , Siena , Italy
| | | | | | | |
Collapse
|
12
|
Caillava AJ, Ortiz GE, Melli LJ, Ugalde JE, Ciocchini AE, Comerci DJ. Improving bioreactor production of a recombinant glycoprotein in
Escherichia coli
: Effect of specific growth rate on protein glycosylation and specific productivity. Biotechnol Bioeng 2019; 116:1427-1438. [DOI: 10.1002/bit.26953] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/30/2018] [Accepted: 02/07/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Ana J. Caillava
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Instituto Tecnológico de Chascomús (IIB‐INTECH), Universidad Nacional de San Martín, CONICET, San MartínBuenos Aires Argentina
| | - Gastón E. Ortiz
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Instituto Tecnológico de Chascomús (IIB‐INTECH), Universidad Nacional de San Martín, CONICET, San MartínBuenos Aires Argentina
| | - Luciano J. Melli
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Instituto Tecnológico de Chascomús (IIB‐INTECH), Universidad Nacional de San Martín, CONICET, San MartínBuenos Aires Argentina
| | - Juan E. Ugalde
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Instituto Tecnológico de Chascomús (IIB‐INTECH), Universidad Nacional de San Martín, CONICET, San MartínBuenos Aires Argentina
| | - Andrés E. Ciocchini
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Instituto Tecnológico de Chascomús (IIB‐INTECH), Universidad Nacional de San Martín, CONICET, San MartínBuenos Aires Argentina
| | - Diego J. Comerci
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Instituto Tecnológico de Chascomús (IIB‐INTECH), Universidad Nacional de San Martín, CONICET, San MartínBuenos Aires Argentina
- Comisión Nacional de Energía Atómica, Grupo Pecuario, Centro Atómico EzeizaBuenos Aires Argentina
| |
Collapse
|
13
|
Abstract
There is an ongoing race between bacterial evolution and medical advances. Pathogens have the advantages of short generation times and horizontal gene transfer that enable rapid adaptation to new host environments and therapeutics that currently outpaces clinical research. Antibiotic resistance, the growing impact of nosocomial infections, cancer-causing bacteria, the risk of zoonosis, and the possibility of biowarfare all emphasize the increasingly urgent need for medical research focussed on bacterial pathogens. Bacterial glycoproteins are promising targets for alternative therapeutic intervention since they are often surface exposed, involved in host-pathogen interactions, required for virulence, and contain distinctive glycan structures. The potential exists to exploit these unique structures to improve clinical prevention, diagnosis, and treatment strategies. Translation of the potential in this field to actual clinical impact is an exciting prospect for fighting infectious diseases.
Collapse
Affiliation(s)
- Kelly M Fulton
- a Human Health Therapeutics Portfolio , National Research Council Canada , Ottawa , Canada
| | - Jeffrey C Smith
- b Department of Chemistry and Institute of Biochemistry , Carleton University , Ottawa , Canada
| | - Susan M Twine
- a Human Health Therapeutics Portfolio , National Research Council Canada , Ottawa , Canada
| |
Collapse
|
14
|
Abstract
Protein glycosylation and capsular polysaccharide formation are increasingly recognized as playing central roles in the survival and virulence of bacterial pathogens. In this issue of Molecular Microbiology, structural analysis in Acinetobacter baumannii 17978 revealed that a pentasaccharide that decorates glycoproteins is formed of the same building blocks used for capsule biosynthesis demonstrating split roles for this glycan. Disruption of PglC, the initiating glycosyltransferase responsible for attachment of the first sugar to undecaprenylphosphate abolished glycoprotein production and capsule biosynthesis. Both pathways are demonstrated to be important in biofilm formation and pathogenesis, and disabling their synthesis should provide a useful route for antimicrobial design. Shared polysaccharide usage reduces the genetic and metabolic burden in a bacterial cell and is an emerging theme among bacterial pathogens that need to be energy efficient for their streamlined lifestyle.
Collapse
Affiliation(s)
- Jon Cuccui
- Department of Pathogen Molecular Biology, The London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | | |
Collapse
|
15
|
Cuccui J, Thomas RM, Moule MG, D'Elia RV, Laws TR, Mills DC, Williamson D, Atkins TP, Prior JL, Wren BW. Exploitation of bacterial N-linked glycosylation to develop a novel recombinant glycoconjugate vaccine against Francisella tularensis. Open Biol 2013; 3:130002. [PMID: 23697804 PMCID: PMC3866875 DOI: 10.1098/rsob.130002] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 05/01/2013] [Indexed: 11/12/2022] Open
Abstract
Glycoconjugate-based vaccines have proved to be effective at producing long-lasting protection against numerous pathogens. Here, we describe the application of bacterial protein glycan coupling technology (PGCT) to generate a novel recombinant glycoconjugate vaccine. We demonstrate the conjugation of the Francisella tularensis O-antigen to the Pseudomonas aeruginosa carrier protein exotoxin A using the Campylobacter jejuni PglB oligosaccharyltransferase. The resultant recombinant F. tularensis glycoconjugate vaccine is expressed in Escherichia coli where yields of 3 mg l(-1) of culture were routinely produced in a single-step purification process. Vaccination of BALB/c mice with the purified glycoconjugate boosted IgG levels and significantly increased the time to death upon subsequent challenge with F. tularensis subsp. holarctica. PGCT allows different polysaccharide and protein combinations to be produced recombinantly and could be easily applicable for the production of diverse glycoconjugate vaccines.
Collapse
Affiliation(s)
- Jon Cuccui
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Rebecca M. Thomas
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Madeleine G. Moule
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Riccardo V. D'Elia
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Thomas R. Laws
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Dominic C. Mills
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Diane Williamson
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Timothy P. Atkins
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
- School of Biosciences, University of Exeter, Devon, UK
| | - Joann L. Prior
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Brendan W. Wren
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
16
|
Musumeci MA, Hug I, Scott NE, Ielmini MV, Foster LJ, Wang PG, Feldman MF. In vitro activity of Neisseria meningitidis PglL O-oligosaccharyltransferase with diverse synthetic lipid donors and a UDP-activated sugar. J Biol Chem 2013; 288:10578-87. [PMID: 23460642 DOI: 10.1074/jbc.m112.432815] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Oligosaccharyltransferases (OTases) are enzymes that catalyze the transfer of an oligosaccharide from a lipid carrier to an acceptor molecule, commonly a protein. OTases are classified as N-OTases and O-OTases, depending on the nature of the glycosylation reaction. The N-OTases catalyze the glycan transfer to amide groups in asparagines in a reaction named N-linked glycosylation. The O-OTases are responsible for protein O-linked glycosylation, which involves the attachment of glycans to hydroxyl groups of serine or threonine residues. These enzymes exhibit a relaxed specificity and are able to transfer a variety of glycan structures to different protein acceptors. This property confers OTases with great biotechnological potential as these enzymes can produce glycoconjugates relevant to the pharmaceutical industry. Furthermore, OTases are thought to be involved in pathogenesis mechanisms. Several aspects of the functionality of OTases are not fully understood. In this work, we developed a novel approach to perform kinetic studies on PglL, the O-OTase from Neisseria meningitidis. We investigated the importance of the acyl moiety of the lipid glycan donor substrate on the functionality of PglL by testing the efficiency of glycosylation reactions using synthetic substrates carrying the same glycan structure but different acyl moieties. We found that PglL can function with many lipids as glycan donors, although the length and the conformation of the lipid moiety significantly influenced the catalytic efficiency. Interestingly, PglL was also able to transfer a monosaccharide employing its nucleotide-activated form, acting as a Leloir glycosyltransferase. These results provide new insights on the function and the evolution of oligosaccharyltransferases.
Collapse
Affiliation(s)
- Matias A Musumeci
- Alberta Glycomics Centre, Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Terra VS, Mills DC, Yates LE, Abouelhadid S, Cuccui J, Wren BW. Recent developments in bacterial protein glycan coupling technology and glycoconjugate vaccine design. J Med Microbiol 2012; 61:919-926. [DOI: 10.1099/jmm.0.039438-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Vanessa S. Terra
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Dominic C. Mills
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Laura E. Yates
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Sherif Abouelhadid
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Jon Cuccui
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Brendan W. Wren
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
18
|
Characterization of the structurally diverse N-linked glycans of Campylobacter species. J Bacteriol 2012; 194:2355-62. [PMID: 22389484 DOI: 10.1128/jb.00042-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Gram-negative bacterium Campylobacter jejuni encodes an extensively characterized N-linked protein glycosylation system that modifies many surface proteins with a heptasaccharide glycan. In C. jejuni, the genes that encode the enzymes required for glycan biosynthesis and transfer to protein are located at a single pgl gene locus. Similar loci are also present in the genome sequences of all other Campylobacter species, although variations in gene content and organization are evident. In this study, we have demonstrated that only Campylobacter species closely related to C. jejuni produce glycoproteins that interact with both a C. jejuni N-linked-glycan-specific antiserum and a lectin known to bind to the C. jejuni N-linked glycan. In order to further investigate the structure of Campylobacter N-linked glycans, we employed an in vitro peptide glycosylation assay combined with mass spectrometry to demonstrate that Campylobacter species produce a range of structurally distinct N-linked glycans with variations in the number of sugar residues (penta-, hexa-, and heptasaccharides), the presence of branching sugars, and monosaccharide content. These data considerably expand our knowledge of bacterial N-linked glycan structure and provide a framework for investigating the role of glycosyltransferases and sugar biosynthesis enzymes in glycoprotein biosynthesis with practical implications for synthetic biology and glycoengineering.
Collapse
|
19
|
Farahmand B, Khodabandeh M, Mahboudi F, Fotouhi F, Saleh M, Barkhordari F, Tabatabaian M, Nasab FP, Kheiri MT. Influenza Virus Hemagglutinin: A Model for Protein N-Glycosylation in Recombinant Escherichia coli. Intervirology 2012; 55:219-24. [DOI: 10.1159/000327784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 03/10/2011] [Indexed: 11/19/2022] Open
|
20
|
Hug I, Zheng B, Reiz B, Whittal RM, Fentabil MA, Klassen JS, Feldman MF. Exploiting bacterial glycosylation machineries for the synthesis of a Lewis antigen-containing glycoprotein. J Biol Chem 2011; 286:37887-94. [PMID: 21878645 DOI: 10.1074/jbc.m111.287755] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycoproteins constitute a class of compounds of increasing importance for pharmaceutical applications. The manipulation of bacterial protein glycosylation systems from Gram-negative bacteria for the synthesis of recombinant glycoproteins is a promising alternative to the current production methods. Proteins carrying Lewis antigens have been shown to have potential applications for the treatment of diverse autoimmune diseases. In this work, we developed a mixed approach consisting of in vivo and in vitro steps for the synthesis of glycoproteins containing the Lewis x antigen. Using glycosyltransferases from Haemophilus influenzae, we engineered Escherichia coli to assemble a tetrasaccharide on the lipid carrier undecaprenylphosphate. This glycan was transferred in vivo from the lipid to a carrier protein by the Campylobacter jejuni oligosaccharyltransferase PglB. The glycoprotein was then fucosylated in vitro by a truncated fucosyltransferase from Helicobacter pylori. Diverse mass spectrometry techniques were used to confirm the structure of the glycan. The strategy presented here could be adapted in the future for the synthesis of diverse glycoproteins. Our experiments demonstrate that bacterial enzymes can be exploited for the production of glycoproteins carrying glycans present in human cells for potential therapeutic applications.
Collapse
Affiliation(s)
- Isabelle Hug
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | | | | | | | | | | |
Collapse
|
21
|
Jefferis R. The antibody paradigm: present and future development as a scaffold for biopharmaceutical drugs. Biotechnol Genet Eng Rev 2011; 26:1-42. [PMID: 21415874 DOI: 10.5661/bger-26-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Early studies of the humoral immune response revealed an apparent paradox: an infinite diversity of antibody specificities encoded within a finite genome. In consequence antibodies became a focus of interest for biochemists and geneticists. It resulted in the elucidation of the basic structural unit, the immunoglobulin (Ig) domain, comprised of ~ 100 amino acid residues that generate the characteristic "immunoglobulin (Ig) fold". The Ig fold has an anti-parallel ß-pleated sheet (barrel) structure that affords structural stability whilst the ß-bends allow for essentially infinite structural variation and functional diversity. This versatility is reflected in the Ig domain being the most widely utilised structural unit within the proteome. Human antibodies are comprised of multiple Ig domains and their structural diversity may be enhanced through the attachment of oligosaccharides. This review summarizes our current understanding of the immunoglobulin structure/function relationships and the application of protein and oligosaccharide engineering to further develop the Ig domain as a scaffold for the generation of new and novel antibody based therapeutics.
Collapse
Affiliation(s)
- Roy Jefferis
- School of Immunity and Infection, The College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
22
|
Ielmini MV, Feldman MF. Desulfovibrio desulfuricans PglB homolog possesses oligosaccharyltransferase activity with relaxed glycan specificity and distinct protein acceptor sequence requirements. Glycobiology 2010; 21:734-42. [PMID: 21098514 DOI: 10.1093/glycob/cwq192] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oligosaccharyltransferases (OTases) are responsible for the transfer of carbohydrates from lipid carriers to acceptor proteins and are present in all domains of life. In bacteria, the most studied member of this family is PglB from Campylobacter jejuni (PglB(Cj)). This enzyme is functional in Escherichia coli and, contrary to its eukaryotic counterparts, has the ability to transfer a variety of oligo- and polysaccharides to protein carriers in vivo. Phylogenetic analysis revealed that in the delta proteobacteria Desulfovibrio sp., the PglB homolog is more closely related to eukaryotic and archaeal OTases than to its Campylobacter counterparts. Genetic analysis revealed the presence of a putative operon that might encode all enzymes required for N-glycosylation in Desulfovibrio desulfuricans. D. desulfuricans PglB (PglB(Dd)) was cloned and successfully expressed in E. coli, and its activity was confirmed by transferring the C. jejuni heptasaccharide onto the model protein acceptor AcrA. In contrast to PglB(Cj), which adds two glycan chains to AcrA, a single oligosaccharide was attached to the protein by PglB(Dd). Site-directed mutagenesis of the five putative N-X-S/T glycosylation sites in AcrA and mass spectrometry analysis showed that PglB(Dd) does not recognize the "conventional bacterial glycosylation sequon" consisting of the sequence D/E-X(1)-N-X(2)-S/T (where X(1) and X(2) are any amino acid except proline), and instead used a different site for the attachment of the oligosaccharide than PglB(Cj.). Furthermore, PglB(Dd) exhibited relaxed glycan specificity, being able to transfer mono- and polysaccharides to AcrA. Our analysis constitutes the first characterization of an OTase from delta-proteobacteria involved in N-linked protein glycosylation.
Collapse
Affiliation(s)
- Maria V Ielmini
- Alberta Ingenuity Centre for Carbohydrate Science, Department of Biological Sciences, University of Alberta, Edmonton, Alta, Canada
| | | |
Collapse
|
23
|
Kaderbhai NN, Ahmed K, Kaderbhai MA. Export of a hyperexpressed mammalian globular cytochrome b5 precursor in Escherichia coli is dramatically affected by the nature of the amino acid flanking the secretory signal sequence cleavage bond. Protein Sci 2010; 19:1344-53. [PMID: 20506367 DOI: 10.1002/pro.411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A chimeric mammalian globular cytochrome b(5) fused to Escherichia coli alkaline phosphatase signal sequence (SS) was used as a model probe to investigate the influence of substituting each one of the standard 20 amino acids at its N-terminus on the Sec-dependent export of the precursor to the periplasmic space of E. coli. Substituting the native Met(+1) of the passenger protein flanking the SS with any one of the remaining 19 amino acids introduced significant changes in the export of cytochrome b(5) without jamming the Sec-dependent translocon. Acidic and hydrophilic residues proved to be the most efficient promoters of export. Small, nonbulky and basic residues yielded intermediate levels of the hemoprotein export. Replacement with a Cys(+1) residue generated significant quantities of both monomeric and disulfide-linked dimeric forms. However, bulky, aromatic and hydrophobic residues caused a significant decline in the rates of secretion. In expectation with their absences in the natural periplasmically secreted proteins, Pro and Ile-tagged cytochrome b(5) precursors failed to generate any detectable secreted recombinant products. Although Ala, amongst the native E. coli periplasmic proteins, is the preferred X(+1) residue with an occurrence of 50% frequency, it proved half as effective in promoting export when inserted proximally to the SS of cytochrome b(5). The mechanisms involved for these export variations are discussed. The findings will prove beneficial for high-level generation of recombinant proteins by secretory means for pharmaceutical and related biotechnological applications.
Collapse
Affiliation(s)
- Naheed N Kaderbhai
- William Davies Laboratories, Institute of Biological, Environmental and Rural Sciences, Plas Gogerddan Campus, Aberystwyth University Aberystwyth, Ceredigion SY23 3EB, United Kingdom.
| | | | | |
Collapse
|
24
|
Abstract
Bacteria produce an array of glycan-based structures including capsules, lipo-oligosaccharide and glycosylated proteins, which are invariably cell-surface-located. For pathogenic bacteria, such structures are involved in diverse roles in the life cycle of the bacterium, including adhesion, colonization, avoidance of predation and interactions with the immune system. Compared with eukaryotes, bacteria produce huge combinatorial variations of glycan structures, which, coupled to the lack of genetic data, has previously hampered studies on bacterial glycans and their role in survival and pathogenesis. The advent of genomics in tandem with rapid technological improvements in MS analysis has opened a new era in bacterial glycomics. This has resulted in a rich source of novel glycan structures and new possibilities for glycoprospecting and glycoengineering. However, assigning genetic information in predicted glycan biosynthetic pathways to the overall structural information is complex. Bioinformatic analysis is required, linked to systematic mutagenesis and functional analysis of individual genes, often from diverse biosynthetic pathways. This must then be related back to structural analysis from MS or NMR spectroscopy. To aid in this process, systems level analysis of the multiple datasets can be used to make predictions of gene function that can then be confirmed experimentally. The present paper exemplifies these advances with reference to the major gastrointestinal pathogen Campylobacter jejuni.
Collapse
|
25
|
Schwarz F, Lizak C, Fan YY, Fleurkens S, Kowarik M, Aebi M. Relaxed acceptor site specificity of bacterial oligosaccharyltransferase in vivo. Glycobiology 2010; 21:45-54. [DOI: 10.1093/glycob/cwq130] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
26
|
Identification of the sequences recognized by the Bacillus subtilis response regulator YclJ. Arch Microbiol 2010; 192:569-80. [PMID: 20512483 DOI: 10.1007/s00203-010-0586-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 05/06/2010] [Accepted: 05/07/2010] [Indexed: 10/19/2022]
Abstract
The Bacillus subtilis yclJ gene encodes an OmpR-type response regulator of a two-component regulatory system with unknown function. A previous DNA microarray experiment suggested that multicopy yclJ greatly enhances the expression of several operons in a cognate kinase (YclK)-deficient strain. To confirm this, lacZ fusion analysis was performed in the yclK background with overexpressed yclJ. As a result, yclHI, ykcBC, and yngABC were indeed positively regulated by YclJ. Gel retardation and DNase I footprint analyses revealed that YclJ binds to the promoter regions of yclHI, ykcBC, and yngABC. Nucleotide sequence analysis of the binding regions suggested that YclJ recognizes a direct repeat of the consensus sequence TTCATANTTT, the upstream half of which has close similarity to the consensus binding sequence of the other OmpR family response regulator PhoP. LacZ fusion analysis of the control region of yngA with deletion or point mutation confirmed that the YclJ-binding sequence is required for the YclJ-mediated activation of yngA. Furthermore, we identified two more YclJ-regulated genes, yycA and yfjR, using bioinformatic analysis of the B. subtilis genome, and it was shown that YclJ binds to those promoters and controls the expression of those genes.
Collapse
|
27
|
Solá RJ, Griebenow K. Glycosylation of therapeutic proteins: an effective strategy to optimize efficacy. BioDrugs 2010; 24:9-21. [PMID: 20055529 DOI: 10.2165/11530550-000000000-00000] [Citation(s) in RCA: 336] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During their development and administration, protein-based drugs routinely display suboptimal therapeutic efficacies due to their poor physicochemical and pharmacological properties. These innate liabilities have driven the development of molecular strategies to improve the therapeutic behavior of protein drugs. Among the currently developed approaches, glycoengineering is one of the most promising, because it has been shown to simultaneously afford improvements in most of the parameters necessary for optimization of in vivo efficacy while allowing for targeting to the desired site of action. These include increased in vitro and in vivo molecular stability (due to reduced oxidation, cross-linking, pH-, chemical-, heating-, and freezing-induced unfolding/denaturation, precipitation, kinetic inactivation, and aggregation), as well as modulated pharmacodynamic responses (due to altered potencies from diminished in vitro enzymatic activities and altered receptor binding affinities) and improved pharmacokinetic profiles (due to altered absorption and distribution behaviors, longer circulation lifetimes, and decreased clearance rates). This article provides an account of the effects that glycosylation has on the therapeutic efficacy of protein drugs and describes the current understanding of the mechanisms by which glycosylation leads to such effects.
Collapse
Affiliation(s)
- Ricardo J Solá
- Laboratory for Applied Biochemistry and Biotechnology, Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico 00931-3346, USA.
| | | |
Collapse
|
28
|
Reid CW, Fulton KM, Twine SM. Never take candy from a stranger: the role of the bacterial glycome in host–pathogen interactions. Future Microbiol 2010; 5:267-88. [DOI: 10.2217/fmb.09.103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
With the comprehensive study and complete sequencing of the Haemophilus influenzae genome in 1995 came the term ‘genomics’ and the beginning of the ‘omics’ era. Since this time, several analogous fields, such as transcriptomics and proteomics, have emerged. While growth and advancement in these fields have increased understanding of microbial virulence, the study of bacterial glycomes is still in its infancy and little is known concerning their role in host–pathogen interactions. Bacterial glycomics is challenging owing to the diversity of glyco-conjugate molecules, vast array of unusual sugars and limited number of analytical approaches available. However, recent advances in glycomics technologies offer the potential for exploration and characterization of both the structures and functions of components of bacterial glycomes in a systematic manner. Such characterization is a prerequisite for discerning the role of bacterial glycans in the interaction between host defences and bacterial virulence factors.
Collapse
Affiliation(s)
- Christopher W Reid
- National Research Council – Institute for Biological Science, Ottawa, Ontario, K1A 0R6, Canada
| | - Kelly M Fulton
- National Research Council – Institute for Biological Science, Ottawa, Ontario, K1A 0R6, Canada
| | - Susan M Twine
- National Research Council – Institute for Biological Science, Ottawa, Ontario, K1A 0R6, Canada
| |
Collapse
|
29
|
Steiner K, Hagelueken G, Messner P, Schäffer C, Naismith JH. Structural basis of substrate binding in WsaF, a rhamnosyltransferase from Geobacillus stearothermophilus. J Mol Biol 2010; 397:436-47. [PMID: 20097205 PMCID: PMC3898925 DOI: 10.1016/j.jmb.2010.01.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 01/13/2010] [Accepted: 01/15/2010] [Indexed: 11/27/2022]
Abstract
Carbohydrate polymers are medically and industrially important. The S-layer of many Gram-positive organisms comprises protein and carbohydrate polymers and forms an almost paracrystalline array on the cell surface. Not only is this array important for the bacteria but it has potential application in the manufacture of commercially important polysaccharides and glycoconjugates as well. The S-layer glycoprotein glycan from Geobacillus stearothermophilus NRS 2004/3a is mainly composed of repeating units of three rhamnose sugars linked by α-1,3-, α-1,2-, and β-1,2-linkages. The formation of the β-1,2-linkage is catalysed by the enzyme WsaF. The rational use of this system is hampered by the fact that WsaF and other enzymes in the pathway share very little homology to other enzymes. We report the structural and biochemical characterisation of WsaF, the first such rhamnosyltransferase to be characterised. Structural work was aided by the surface entropy reduction method. The enzyme has two domains, the N-terminal domain, which binds the acceptor (the growing rhamnan chain), and the C-terminal domain, which binds the substrate (dTDP-β-l-rhamnose). The structure of WsaF bound to dTDP and dTDP-β-l-rhamnose coupled to biochemical analysis identifies the residues that underlie catalysis and substrate recognition. We have constructed and tested by site-directed mutagenesis a model for acceptor recognition.
Collapse
Affiliation(s)
- Kerstin Steiner
- Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, UK
| | | | | | | | | |
Collapse
|