1
|
Prevalence of Microorganisms in Atherosclerotic Plaques of Coronary Arteries: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8678967. [PMID: 36506809 PMCID: PMC9731758 DOI: 10.1155/2022/8678967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/05/2022] [Indexed: 12/02/2022]
Abstract
Background In this systematic review and meta-analysis, the existence of pathogens in atherosclerotic plaques of coronary arteries was investigated in coronary arteries diseases (CAD) patients. Methods This study was designed and implemented up to 31 August 2020. The findings present according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) checklist. Two independent reviewers (I.RJ and S.H) performed a comprehensive search on four different English databases including PubMed, ISI, Scopus, and Embase. In order to assess the quality of the articles, a checklist prepared by The Joanna Briggs Institute (JBI) was used. Results Finally, 44 studies were selected. The prevalence of different microorganisms in coronary arteries were as follows: Aggregatibacter actinomycetemcomitans (46.2%), Campylobacter rectus (43.0%), Chlamydia pneumonia (42.8%), Cytomegalovirus (29.1%), Helicobacter pylori (18.9%), Herpes simplex virus type 1 (5.9%), Porphyromonas gingivalis (42.6%), Prevotella intermedia (47.6%), Tannerella forsythia (43.7%), and Treponema denticola (32.9%). Conclusion Based on the result of this meta-analysis, Prevotella intermedia and Aggregatibacter actinomycetemcomitans are the most common microorganisms in atherosclerotic plaques of coronary arteries and may have an important role in the development of atherosclerosis.
Collapse
|
2
|
Orrù G, Muggironi F, Mameli A, Demontis C, Arcadu B, Scano A, Denotti G, Piras V, Girometta C, Zeza B, Pilloni A. BAX Gene Overexpression in the Tongue Could Warn of Infection Risk due to Periodontal Pathogens. Open Dent J 2018. [DOI: 10.2174/1874210601812011070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Different host proteins play a central role in cell response during bacterial infections, the Bcl-2-Associated X protein (BAX) and Vascular Cell Adhesion Protein 1 (VCAM-1) are often reported in infective primary events during cell injury.
Objective:
The aim of this study is to evaluate the predictive value of these two proteins as biomarkers of oral bacterial infection, with particular emphasis on the tongue, which plays an important role in microbial homeostasis in the mouth.
Methods:
Twenty-nine patients were recruited and divided according to the Periodontal Index (CPI), 4 of them were severely compromised periodontal patients. Oral hygiene, gingival tissues and plaque presence were evaluated clinically. The laboratory analysis carried out on tongue tissue included: total bacterial genomes, proportion of specific periopathogens and BAX -VCAM-1 expression rate, while Reactive Oxygen Species (ROS) were measured in saliva.
Results:
Neither tongue microbiological status nor salivary ROS level corresponded with the state of disease. VCAM-1 mRNA expression rate was comparable in all patients but, on the contrary, BAX expression resulted high in periodontally-compromised patients and appears related to periodontal status in the analyzed subjects.
Conclusion:
This preliminary work suggests that the BAX protein is a possible candidate in a prognostic marker study for oral diseases started by periodontal bacteria. For example, none of the evaluated clinical and microbiological parameters could predict the presence, prognosis or recurrence of periodontal diseases. This biomarker could be a valuable tool in determining the risk, diagnosis and prognosis of this human illness.
Collapse
|
3
|
Pallavi T, Chandra RV, Reddy AA, Reddy BH, Naveen A. Identical mitochondrial somatic mutations unique to chronic periodontitis and coronary artery disease. J Indian Soc Periodontol 2016; 20:17-21. [PMID: 27041832 PMCID: PMC4795126 DOI: 10.4103/0972-124x.168495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Context: The inflammatory processes involved in chronic periodontitis and coronary artery diseases (CADs) are similar and produce reactive oxygen species that may result in similar somatic mutations in mitochondrial deoxyribonucleic acid (mtDNA). Aims: The aims of the present study were to identify somatic mtDNA mutations in periodontal and cardiac tissues from subjects undergoing coronary artery bypass surgery and determine what fraction was identical and unique to these tissues. Settings and Design: The study population consisted of 30 chronic periodontitis subjects who underwent coronary artery surgery after an angiogram had indicated CAD. Materials and Methods: Gingival tissue samples were taken from the site with deepest probing depth; coronary artery tissue samples were taken during the coronary artery bypass grafting procedures, and blood samples were drawn during this surgical procedure. These samples were stored under aseptic conditions and later transported for mtDNA analysis. Statistical Analysis Used: Complete mtDNA sequences were obtained and aligned with the revised Cambridge reference sequence (NC_012920) using sequence analysis and auto assembler tools. Results: Among the complete mtDNA sequences, a total of 162 variations were spread across the whole mitochondrial genome and present only in the coronary artery and the gingival tissue samples but not in the blood samples. Among the 162 variations, 12 were novel and four of the 12 novel variations were found in mitochondrial NADH dehydrogenase subunit 5 complex I gene (33.3%). Conclusions: Analysis of mtDNA mutations indicated 162 variants unique to periodontitis and CAD. Of these, 12 were novel and may have resulted from destructive oxidative forces common to these two diseases.
Collapse
Affiliation(s)
- Tokala Pallavi
- Department of Periodontics, SVS Institute of Dental Sciences, Mahabubnagar, Telangana, India
| | - Rampalli Viswa Chandra
- Department of Periodontics, SVS Institute of Dental Sciences, Mahabubnagar, Telangana, India
| | - Aileni Amarender Reddy
- Department of Periodontics, SVS Institute of Dental Sciences, Mahabubnagar, Telangana, India
| | - Bavigadda Harish Reddy
- Department of Periodontics, SVS Institute of Dental Sciences, Mahabubnagar, Telangana, India
| | - Anumala Naveen
- Department of Periodontics, SVS Institute of Dental Sciences, Mahabubnagar, Telangana, India
| |
Collapse
|
4
|
Kieselbach T, Zijnge V, Granström E, Oscarsson J. Proteomics of Aggregatibacter actinomycetemcomitans Outer Membrane Vesicles. PLoS One 2015; 10:e0138591. [PMID: 26381655 PMCID: PMC4575117 DOI: 10.1371/journal.pone.0138591] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 09/01/2015] [Indexed: 11/18/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is an oral and systemic pathogen associated with aggressive forms of periodontitis and with endocarditis. Outer membrane vesicles (OMVs) released by this species have been demonstrated to deliver effector proteins such as cytolethal distending toxin (CDT) and leukotoxin (LtxA) into human host cells and to act as triggers of innate immunity upon carriage of NOD1- and NOD2-active pathogen-associated molecular patterns (PAMPs). To improve our understanding of the pathogenicity-associated functions that A. actinomycetemcomitans exports via OMVs, we studied the proteome of density gradient-purified OMVs from a rough-colony type clinical isolate, strain 173 (serotype e) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). This analysis yielded the identification of 151 proteins, which were found in at least three out of four independent experiments. Data are available via ProteomeXchange with identifier PXD002509. Through this study, we not only confirmed the vesicle-associated release of LtxA, and the presence of proteins, which are known to act as immunoreactive antigens in the human host, but we also identified numerous additional putative virulence-related proteins in the A. actinomycetemcomitans OMV proteome. The known and putative functions of these proteins include immune evasion, drug targeting, and iron/nutrient acquisition. In summary, our findings are consistent with an OMV-associated proteome that exhibits several offensive and defensive functions, and they provide a comprehensive basis to further disclose roles of A. actinomycetemcomitans OMVs in periodontal and systemic disease.
Collapse
Affiliation(s)
| | - Vincent Zijnge
- Center for Dentistry and Oral Hygiene, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Jan Oscarsson
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
5
|
Grover HS, Kapoor S, Saksena N. Periodontal proteomics: wonders never cease! INTERNATIONAL JOURNAL OF PROTEOMICS 2013; 2013:850235. [PMID: 24490073 PMCID: PMC3893808 DOI: 10.1155/2013/850235] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/05/2013] [Accepted: 12/05/2013] [Indexed: 02/07/2023]
Abstract
Proteins are vital parts of living organisms, as they are integral components of the physiological metabolic pathways of cells. Periodontal tissues comprise multicompartmental groups of interacting cells and matrices that provide continuous support, attachment, proprioception, and physical protection for the teeth. The proteome map, that is, complete catalogue of the matrix and cellular proteins expressed in alveolar bone, cementum, periodontal ligament, and gingiva, is to be explored for more in-depth understanding of periodontium. The ongoing research to understand the signalling pathways that allow cells to divide, differentiate, and die in controlled manner has brought us to the era of proteomics. Proteomics is defined as the study of all proteins including their relative abundance, distribution, posttranslational modifications, functions, and interactions with other macromolecules, in a given cell or organism within a given environment and at a specific stage in the cell cycle. Its application to periodontal science can be used to monitor health status, disease onset, treatment response, and outcome. Proteomics can offer answers to critical, unresolved questions such as the biological basis for the heterogeneity in gingival, alveolar bone, and cemental cell populations.
Collapse
Affiliation(s)
- Harpreet Singh Grover
- Department of Periodontology, Faculty of Dental Sciences, SGT University, Budhera, Gurgaon, Haryana 122505, India
| | - Shalini Kapoor
- Department of Periodontology, Faculty of Dental Sciences, SGT University, Budhera, Gurgaon, Haryana 122505, India
| | - Neha Saksena
- Department of Periodontology, Faculty of Dental Sciences, SGT University, Budhera, Gurgaon, Haryana 122505, India
| |
Collapse
|
6
|
Chatzidimitriou D, Kirmizis D, Gavriilaki E, Chatzidimitriou M, Malisiovas N. Atherosclerosis and infection: is the jury still not in? Future Microbiol 2013; 7:1217-30. [PMID: 23030426 DOI: 10.2217/fmb.12.87] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory process accounting for increased cardiovascular and cerebrovascular morbidity and mortality. A wealth of recent data has implicated several infectious agents, mainly Chlamydophila pneumoniae, Helicobacter pylori, CMV and periodontal pathogens, in atherosclerosis. Thus, we sought to comprehensively review the available data on the topic, exploring in particular the pathogenetic mechanisms, and discuss anticipated future directions.
Collapse
|
7
|
Zijnge V, Kieselbach T, Oscarsson J. Proteomics of protein secretion by Aggregatibacter actinomycetemcomitans. PLoS One 2012; 7:e41662. [PMID: 22848560 PMCID: PMC3405016 DOI: 10.1371/journal.pone.0041662] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/25/2012] [Indexed: 01/18/2023] Open
Abstract
The extracellular proteome (secretome) of periodontitis-associated bacteria may constitute a major link between periodontitis and systemic diseases. To obtain an overview of the virulence potential of Aggregatibacter actinomycetemcomitans, an oral and systemic human pathogen implicated in aggressive periodontitis, we used a combined LC-MS/MS and bioinformatics approach to characterize the secretome and protein secretion pathways of the rough-colony serotype a strain D7S. LC-MS/MS revealed 179 proteins secreted during biofilm growth. Further to confirming the release of established virulence factors (e.g. cytolethal distending toxin [CDT], and leukotoxin [LtxA]), we identified additional putative virulence determinants in the secretome. These included DegQ, fHbp, LppC, Macrophage infectivity protein (MIP), NlpB, Pcp, PotD, TolB, and TolC. This finding indicates that the number of extracellular virulence-related proteins is much larger than previously demonstrated, which was also supported by in silico analysis of the strain D7S genome. Moreover, our LC-MS/MS and in silico data revealed that at least Type I, II, and V secretion are actively used to excrete proteins directly into the extracellular space, or via two-step pathways involving the Sec/Tat systems for transport across the inner membrane, and outer membrane factors, secretins and auto-transporters, respectively for delivery across the outer membrane. Taken together, our results provide a molecular basis for further elucidating the role of A. actinomycetemcomitans in periodontal and systemic diseases.
Collapse
Affiliation(s)
- Vincent Zijnge
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | | | - Jan Oscarsson
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
8
|
Alauzet C, Marchandin H, Lozniewski A. New insights into Prevotella diversity and medical microbiology. Future Microbiol 2011; 5:1695-718. [PMID: 21133690 DOI: 10.2217/fmb.10.126] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In light of recent studies based on cultivation-independent methods, it appears that the diversity of Prevotella in human microbiota is greater than was previously assumed from cultivation-based studies, and that the implication of these bacteria in several human diseases was unrecognized. While some Prevotella taxa were found during opportunistic infections, changes in Prevotella abundance and diversity were discovered during dysbiosis-associated diseases. As member of the microbiota, Prevotella may also be considered as a reservoir for resistance genes. Greater knowledge on Prevotella diversity, as well as new insights into its pathogenic potential and implication in dysbiosis are expected from the use of human microbe identification microarrays, from whole-genome sequence analyse, and from the NIH Human Microbiome Project data. New approaches, including molecular-based methods, could contribute to improve the diagnosis of Prevotella infections.
Collapse
Affiliation(s)
- Corentine Alauzet
- Laboratoire de Bactériologie, EA 4369, Faculté de Médecine, Nancy Université, Vandoeuvre-les-Nancy, France
| | | | | |
Collapse
|