1
|
Lê-Bury P, Druart K, Savin C, Lechat P, Mas Fiol G, Matondo M, Bécavin C, Dussurget O, Pizarro-Cerdá J. Yersiniomics, a Multi-Omics Interactive Database for Yersinia Species. Microbiol Spectr 2023; 11:e0382622. [PMID: 36847572 PMCID: PMC10100798 DOI: 10.1128/spectrum.03826-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/26/2023] [Indexed: 03/01/2023] Open
Abstract
The genus Yersinia includes a large variety of nonpathogenic and life-threatening pathogenic bacteria, which cause a broad spectrum of diseases in humans and animals, such as plague, enteritis, Far East scarlet-like fever (FESLF), and enteric redmouth disease. Like most clinically relevant microorganisms, Yersinia spp. are currently subjected to intense multi-omics investigations whose numbers have increased extensively in recent years, generating massive amounts of data useful for diagnostic and therapeutic developments. The lack of a simple and centralized way to exploit these data led us to design Yersiniomics, a web-based platform allowing straightforward analysis of Yersinia omics data. Yersiniomics contains a curated multi-omics database at its core, gathering 200 genomic, 317 transcriptomic, and 62 proteomic data sets for Yersinia species. It integrates genomic, transcriptomic, and proteomic browsers, a genome viewer, and a heatmap viewer to navigate within genomes and experimental conditions. For streamlined access to structural and functional properties, it directly links each gene to GenBank, the Kyoto Encyclopedia of Genes and Genomes (KEGG), UniProt, InterPro, IntAct, and the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and each experiment to Gene Expression Omnibus (GEO), the European Nucleotide Archive (ENA), or the Proteomics Identifications Database (PRIDE). Yersiniomics provides a powerful tool for microbiologists to assist with investigations ranging from specific gene studies to systems biology studies. IMPORTANCE The expanding genus Yersinia is composed of multiple nonpathogenic species and a few pathogenic species, including the deadly etiologic agent of plague, Yersinia pestis. In 2 decades, the number of genomic, transcriptomic, and proteomic studies on Yersinia grew massively, delivering a wealth of data. We developed Yersiniomics, an interactive web-based platform, to centralize and analyze omics data sets on Yersinia species. The platform allows user-friendly navigation between genomic data, expression data, and experimental conditions. Yersiniomics will be a valuable tool to microbiologists.
Collapse
Affiliation(s)
- Pierre Lê-Bury
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, Paris, France
| | - Karen Druart
- Institut Pasteur, Université Paris Cité, CNRS USR2000, Mass Spectrometry for Biology Unit, Proteomic Platform, Paris, France
| | - Cyril Savin
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, Paris, France
- Institut Pasteur, Université Paris Cité, Yersinia National Reference Laboratory, WHO Collaborating Research & Reference Centre for Plague FRA-140, Paris, France
| | - Pierre Lechat
- Institut Pasteur, Université Paris Cité, ALPS, Bioinformatic Hub, Paris, France
| | - Guillem Mas Fiol
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, Paris, France
| | - Mariette Matondo
- Institut Pasteur, Université Paris Cité, CNRS USR2000, Mass Spectrometry for Biology Unit, Proteomic Platform, Paris, France
| | | | - Olivier Dussurget
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, Paris, France
| | - Javier Pizarro-Cerdá
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, Paris, France
- Institut Pasteur, Université Paris Cité, Yersinia National Reference Laboratory, WHO Collaborating Research & Reference Centre for Plague FRA-140, Paris, France
| |
Collapse
|
2
|
Comparative Transcriptomic Profiling of Yersinia enterocolitica O:3 and O:8 Reveals Major Expression Differences of Fitness- and Virulence-Relevant Genes Indicating Ecological Separation. mSystems 2019; 4:mSystems00239-18. [PMID: 31020044 PMCID: PMC6478967 DOI: 10.1128/msystems.00239-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/27/2019] [Indexed: 01/16/2023] Open
Abstract
Yersinia enterocolitica is a major diarrheal pathogen and is associated with a large range of gut-associated diseases. Members of this species have evolved into different phylogroups with genotypic variations. We performed the first characterization of the Y. enterocolitica transcriptional landscape and tracked the consequences of the genomic variations between two different pathogenic phylogroups by comparing their RNA repertoire, promoter usage, and expression profiles under four different virulence-relevant conditions. Our analysis revealed major differences in the transcriptional outputs of the closely related strains, pointing to an ecological separation in which one is more adapted to an environmental lifestyle and the other to a mostly mammal-associated lifestyle. Moreover, a variety of pathoadaptive alterations, including alterations in acid resistance genes, colonization factors, and toxins, were identified which affect virulence and host specificity. This illustrates that comparative transcriptomics is an excellent approach to discover differences in the functional output from closely related genomes affecting niche adaptation and virulence, which cannot be directly inferred from DNA sequences. Yersinia enterocolitica is a zoonotic pathogen and an important cause of bacterial gastrointestinal infections in humans. Large-scale population genomic analyses revealed genetic and phenotypic diversity of this bacterial species, but little is known about the differences in the transcriptome organization, small RNA (sRNA) repertoire, and transcriptional output. Here, we present the first comparative high-resolution transcriptome analysis of Y. enterocolitica strains representing highly pathogenic phylogroup 2 (serotype O:8) and moderately pathogenic phylogroup 3 (serotype O:3) grown under four infection-relevant conditions. Our transcriptome sequencing (RNA-seq) approach revealed 1,299 and 1,076 transcriptional start sites and identified strain-specific sRNAs that could contribute to differential regulation among the phylogroups. Comparative transcriptomics further uncovered major gene expression differences, in particular, in the temperature-responsive regulon. Multiple virulence-relevant genes are differentially regulated between the two strains, supporting an ecological separation of phylogroups with certain niche-adapted properties. Strong upregulation of the ystA enterotoxin gene in combination with constitutive high expression of cell invasion factor InvA further showed that the toxicity of recent outbreak O:3 strains has increased. Overall, our report provides new insights into the specific transcriptome organization of phylogroups 2 and 3 and reveals gene expression differences contributing to the substantial phenotypic differences that exist between the lineages. IMPORTANCEYersinia enterocolitica is a major diarrheal pathogen and is associated with a large range of gut-associated diseases. Members of this species have evolved into different phylogroups with genotypic variations. We performed the first characterization of the Y. enterocolitica transcriptional landscape and tracked the consequences of the genomic variations between two different pathogenic phylogroups by comparing their RNA repertoire, promoter usage, and expression profiles under four different virulence-relevant conditions. Our analysis revealed major differences in the transcriptional outputs of the closely related strains, pointing to an ecological separation in which one is more adapted to an environmental lifestyle and the other to a mostly mammal-associated lifestyle. Moreover, a variety of pathoadaptive alterations, including alterations in acid resistance genes, colonization factors, and toxins, were identified which affect virulence and host specificity. This illustrates that comparative transcriptomics is an excellent approach to discover differences in the functional output from closely related genomes affecting niche adaptation and virulence, which cannot be directly inferred from DNA sequences.
Collapse
|
3
|
Knittel V, Vollmer I, Volk M, Dersch P. Discovering RNA-Based Regulatory Systems for Yersinia Virulence. Front Cell Infect Microbiol 2018; 8:378. [PMID: 30460205 PMCID: PMC6232918 DOI: 10.3389/fcimb.2018.00378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/05/2018] [Indexed: 12/26/2022] Open
Abstract
The genus Yersinia includes three human pathogenic species, Yersinia pestis, the causative agent of the bubonic and pneumonic plague, and enteric pathogens Y. enterocolitica and Y. pseudotuberculosis that cause a number of gut-associated diseases. Over the past years a large repertoire of RNA-based regulatory systems has been discovered in these pathogens using different RNA-seq based approaches. Among them are several conserved or species-specific RNA-binding proteins, regulatory and sensory RNAs as well as various RNA-degrading enzymes. Many of them were shown to control the expression of important virulence-relevant factors and have a very strong impact on Yersinia virulence. The precise targets, the molecular mechanism and their role for Yersinia pathogenicity is only known for a small subset of identified genus- or species-specific RNA-based control elements. However, the ongoing development of new RNA-seq based methods and data analysis methods to investigate the synthesis, composition, translation, decay, and modification of RNAs in the bacterial cell will help us to generate a more comprehensive view of Yersinia RNA biology in the near future.
Collapse
Affiliation(s)
- Vanessa Knittel
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ines Vollmer
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marcel Volk
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
4
|
Leskinen K, Pajunen MI, Varjosalo M, Fernández-Carrasco H, Bengoechea JA, Skurnik M. Several Hfq-dependent alterations in physiology of Yersinia enterocolitica O:3 are mediated by derepression of the transcriptional regulator RovM. Mol Microbiol 2017; 103:1065-1091. [PMID: 28010054 DOI: 10.1111/mmi.13610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2016] [Indexed: 12/27/2022]
Abstract
In bacteria, the RNA chaperone Hfq enables pairing of small regulatory RNAs with their target mRNAs and therefore is a key player of post-transcriptional regulation network. As a global regulator, Hfq is engaged in the adaptation to external environment, regulation of metabolism and bacterial virulence. In this study we used RNA-sequencing and quantitative proteomics (LC-MS/MS) to elucidate the role of this chaperone in the physiology and virulence of Yersinia enterocolitica serotype O:3. This global approach revealed the profound impact of Hfq on gene and protein expression. Furthermore, the role of Hfq in the cell morphology, metabolism, cell wall integrity, resistance to external stresses and pathogenicity was evaluated. Importantly, our results revealed that several alterations typical for the hfq-negative phenotype were due to derepression of the transcriptional factor RovM. The overexpression of RovM caused by the loss of Hfq chaperone resulted in extended growth defect, alterations in the lipid A structure, motility and biofilm formation defects, as well as changes in mannitol utilization. Furthermore, in Y. enterocolitica RovM only in the presence of Hfq affected the abundance of RpoS. Finally, the impact of hfq and rovM mutations on the virulence was assessed in the mouse infection model.
Collapse
Affiliation(s)
- Katarzyna Leskinen
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology, University of Helsinki, Finland
| | - Maria I Pajunen
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology, University of Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki.,Biocentrum Helsinki, Finland: Finnish Institute of Molecular Medicine, Finland
| | | | - José A Bengoechea
- Centre for Experimental Medicine, Queens University Belfast, Belfast, UK
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology, University of Helsinki, Finland.,Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, Helsinki, Finland
| |
Collapse
|
5
|
Nuss AM, Heroven AK, Dersch P. RNA Regulators: Formidable Modulators of Yersinia Virulence. Trends Microbiol 2016; 25:19-34. [PMID: 27651123 DOI: 10.1016/j.tim.2016.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/08/2016] [Accepted: 08/24/2016] [Indexed: 10/21/2022]
Abstract
A large repertoire of RNA-based regulatory mechanisms, including a plethora of cis- and trans-acting noncoding RNAs (ncRNAs), sensory RNA elements, regulatory RNA-binding proteins, and RNA-degrading enzymes have been uncovered lately as key players in the regulation of metabolism, stress responses, and virulence of the genus Yersinia. Many of them are strictly controlled in response to fluctuating environmental conditions sensed during the course of the infection, and certain riboregulators have already been shown to be crucial for virulence. Some of them are highly conserved among the family Enterobacteriaceae, while others are genus-, species-, or strain-specific and could contribute to the difference in Yersinia pathogenicity. Importantly, the analysis of Yersinia riboregulators has not only uncovered crucial elements and regulatory mechanisms governing host-pathogen interactions, it also revealed exciting new venues for the design of novel anti-infectives.
Collapse
Affiliation(s)
- Aaron M Nuss
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| |
Collapse
|
6
|
Liu Z, Gao X, Wang H, Fang H, Yan Y, Liu L, Chen R, Zhou D, Yang R, Han Y. Plasmid pPCP1-derived sRNA HmsA promotes biofilm formation of Yersinia pestis. BMC Microbiol 2016; 16:176. [PMID: 27492011 PMCID: PMC4973556 DOI: 10.1186/s12866-016-0793-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/29/2016] [Indexed: 11/24/2022] Open
Abstract
Background The ability of Yersinia pestis to form a biofilm is an important characteristic in flea transmission of this pathogen. Y. pestis laterally acquired two plasmids (pPCP1and pMT1) and the ability to form biofilms when it evolved from Yersinia pseudotuberculosis. Small regulatory RNAs (sRNAs) are thought to play a crucial role in the processes of biofilm formation and pathogenesis. Results A pPCP1-derived sRNA HmsA (also known as sR084) was found to contribute to the enhanced biofilm formation phenotype of Y. pestis. The concentration of c-di-GMP was significantly reduced upon deletion of the hmsA gene in Y. pestis. The abundance of mRNA transcripts determining exopolysaccharide production, crucial for biofilm formation, was measured by primer extension, RT-PCR and lacZ transcriptional fusion assays in the wild-type and hmsA mutant strains. HmsA positively regulated biofilm synthesis-associated genes (hmsHFRS, hmsT and hmsCDE), but had no regulatory effect on the biofilm degradation-associated gene hmsP. Interestingly, the recently identified biofilm activator sRNA, HmsB, was rapidly degraded in the hmsA deletion mutant. Two genes (rovM and rovA) functioning as biofilm regulators were also found to be regulated by HmsA, whose regulatory effects were consistent with the HmsA-mediated biofilm phenotype. Conclusion HmsA potentially functions as an activator of biofilm formation in Y. pestis, implying that sRNAs encoded on the laterally acquired plasmids might be involved in the chromosome-based regulatory networks implicated in Y. pestis-specific physiological processes. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0793-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zizhong Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China.,State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xiaofang Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China.,Anhui Medical University, Hefei, Anhui, 230032, China
| | - Hongduo Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China.,College of Life Sciences, Anhui University, Hefei, Anhui, 230601, China
| | - Haihong Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China
| | - Yanfeng Yan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China
| | - Lei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China
| | - Rong Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China.,The General Hospital of PLA, Beijing, 100853, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China.
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China.
| |
Collapse
|
7
|
Zhong Z, Xu X, Li X, Liu S, Lei S, Yang M, Yu J, Yuan J, Ke Y, Du X, Wang Z, Ren Z, Peng G, Wang Y, Chen Z. Large-scale identification of small noncoding RNA with strand-specific deep sequencing and characterization of a novel virulence-related sRNA in Brucella melitensis. Sci Rep 2016; 6:25123. [PMID: 27112796 PMCID: PMC4845025 DOI: 10.1038/srep25123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/11/2016] [Indexed: 12/03/2022] Open
Abstract
Brucella is the causative agent of brucellosis, a worldwide epidemic zoonosis. Small noncoding RNAs (sRNAs) are important modulators of gene expression and involved in pathogenesis and stress adaptation of Brucella. In this study, using a strand-specific RNA deep-sequencing approach, we identified a global set of sRNAs expressed by B. melitensis 16M. In total, 1321 sRNAs were identified, ranging from 100 to 600 nucleotides. These sRNAs differ in their expression levels and strand and chromosomal distributions. The role of BSR0441, one of these sRNAs, in the virulence of B. melitensis 16M was further characterized. BSR0441 was highly induced during the infection of macrophages and mice. The deletion mutant of BSR0441 showed significantly reduced spleen colonization in the middle and late phases of infection. The expression of the BSR0441 target mRNA genes was also altered in the BSR0441 mutant strain during macrophage and mice infection, which is consistent with its reduced intracellular survival capacity. In summary, Brucella encodes a large number of sRNAs, which may be involved in the stress adaptation and virulence of Brucella. Further investigation of these regulators will extend our understanding of the Brucella pathogenesis mechanism and the interactions between Brucella and its hosts.
Collapse
Affiliation(s)
- Zhijun Zhong
- College of Veterinary Medicine, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, P. R. China.,Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, P. R. China
| | - Xiaoyang Xu
- College of Veterinary Medicine, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, P. R. China.,Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, P. R. China
| | - Xinran Li
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, P. R. China
| | - Shiwei Liu
- Wangjing Hospital, Academy of Traditional Chinese Medicine, Beijing 100102, P. R. China
| | - Shuangshuang Lei
- College of Veterinary Medicine, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, P. R. China.,Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, P. R. China
| | - Mingjuan Yang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, P. R. China
| | - Jiuxuan Yu
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, P. R. China
| | - Jiuyun Yuan
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, P. R. China
| | - Yuehua Ke
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, P. R. China
| | - Xinying Du
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, P. R. China
| | - Zhoujia Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, P. R. China
| | - Zhihua Ren
- College of Veterinary Medicine, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, P. R. China
| | - Guangneng Peng
- College of Veterinary Medicine, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, P. R. China
| | - Yufei Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, P. R. China.,Department of Laboratory Medicine, The General Hospital of Chinese People's Armed Police Forces, Beijing 100039, P. R. China
| | - Zeliang Chen
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, P. R. China.,Key Laboratory of Zoonotic of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Liaoning Province, Shenyang 110866, P. R. China
| |
Collapse
|
8
|
Abstract
Y. pestis exhibits dramatically different traits of pathogenicity and transmission, albeit their close genetic relationship with its ancestor-Y. pseudotuberculosis, a self-limiting gastroenteric pathogen. Y. pestis is evolved into a deadly pathogen and transmitted to mammals and/or human beings by infected flea biting or directly contacting with the infected animals. Various kinds of environmental changes are implicated into its complex life cycle and pathogenesis. Dynamic regulation of gene expression is critical for environmental adaptation or survival, primarily reflected by genetic regulation mediated by transcriptional factors and small regulatory RNAs at the transcriptional and posttranscriptional level, respectively. The effects of genetic regulation have been shown to profoundly influence Y. pestis physiology and pathogenesis such as stress resistance, biofilm formation, intracellular survival, and replication. In this chapter, we mainly summarize the progresses on popular methods of genetic regulation and on regulatory patterns and consequences of many key transcriptional and posttranscriptional regulators, with a particular emphasis on how genetic regulation influences the biofilm and virulence of Y. pestis.
Collapse
|
9
|
Martínez-Chavarría LC, Vadyvaloo V. Yersinia pestis and Yersinia pseudotuberculosis infection: a regulatory RNA perspective. Front Microbiol 2015; 6:956. [PMID: 26441890 PMCID: PMC4585118 DOI: 10.3389/fmicb.2015.00956] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/28/2015] [Indexed: 12/27/2022] Open
Abstract
Yersinia pestis, responsible for causing fulminant plague, has evolved clonally from the enteric pathogen, Y. pseudotuberculosis, which in contrast, causes a relatively benign enteric illness. An ~97% nucleotide identity over 75% of their shared protein coding genes is maintained between these two pathogens, leaving much conjecture regarding the molecular determinants responsible for producing these vastly different disease etiologies, host preferences and transmission routes. One idea is that coordinated production of distinct factors required for host adaptation and virulence in response to specific environmental cues could contribute to the distinct pathogenicity distinguishing these two species. Small non-coding RNAs that direct posttranscriptional regulation have recently been identified as key molecules that may provide such timeous expression of appropriate disease enabling factors. Here the burgeoning field of small non-coding regulatory RNAs in Yersinia pathogenesis is reviewed from the viewpoint of adaptive colonization, virulence and divergent evolution of these pathogens.
Collapse
Affiliation(s)
- Luary C Martínez-Chavarría
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México Mexico
| | - Viveka Vadyvaloo
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA USA
| |
Collapse
|
10
|
Nuss AM, Heroven AK, Waldmann B, Reinkensmeier J, Jarek M, Beckstette M, Dersch P. Transcriptomic profiling of Yersinia pseudotuberculosis reveals reprogramming of the Crp regulon by temperature and uncovers Crp as a master regulator of small RNAs. PLoS Genet 2015; 11:e1005087. [PMID: 25816203 PMCID: PMC4376681 DOI: 10.1371/journal.pgen.1005087] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/20/2015] [Indexed: 12/20/2022] Open
Abstract
One hallmark of pathogenic yersiniae is their ability to rapidly adjust their life-style and pathogenesis upon host entry. In order to capture the range, magnitude and complexity of the underlying gene control mechanisms we used comparative RNA-seq-based transcriptomic profiling of the enteric pathogen Y. pseudotuberculosis under environmental and infection-relevant conditions. We identified 1151 individual transcription start sites, multiple riboswitch-like RNA elements, and a global set of antisense RNAs and previously unrecognized trans-acting RNAs. Taking advantage of these data, we revealed a temperature-induced and growth phase-dependent reprogramming of a large set of catabolic/energy production genes and uncovered the existence of a thermo-regulated ‘acetate switch’, which appear to prime the bacteria for growth in the digestive tract. To elucidate the regulatory architecture linking nutritional status to virulence we also refined the CRP regulon. We identified a massive remodelling of the CRP-controlled network in response to temperature and discovered CRP as a transcriptional master regulator of numerous conserved and newly identified non-coding RNAs which participate in this process. This finding highlights a novel level of complexity of the regulatory network in which the concerted action of transcriptional regulators and multiple non-coding RNAs under control of CRP adjusts the control of Yersinia fitness and virulence to the requirements of their environmental and virulent life-styles. Many bacterial pathogens cycle between environmental sources and mammalian hosts. Adaptation to the different natural habitats and host niches is achieved through complex regulatory networks which adjust synthesis of the large repertoire of crucial virulence factors and fitness determinants. To uncover underlying control circuits, we determined the first in-depth single-nucleotide resolution transcriptome of Yersinia. This revealed important novel genetic information, such as global locations of transcriptional start sites, non-coding RNAs, potential riboswitches and provided a set of virulence-relevant expression profiles, which constitute a valuable tool for the research community. The analysis further uncovered a temperature-induced global reprogramming of central metabolic functions, likely to support intestinal colonization of the pathogen. This is accompanied by a major reorganization of the CRP regulon, which involves a multitude of regulatory RNAs. The primary consequence is a fine-tuned, coordinated control of metabolism and virulence through a plethora of environmentally controlled regulatory RNAs allowing rapid adaptation and high flexibility during life-style changes.
Collapse
Affiliation(s)
- Aaron M. Nuss
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Barbara Waldmann
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jan Reinkensmeier
- Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld University, Germany
| | - Michael Jarek
- Department of Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Beckstette
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
11
|
Fang N, Qu S, Yang H, Fang H, Liu L, Zhang Y, Wang L, Han Y, Zhou D, Yang R. HmsB enhances biofilm formation in Yersinia pestis. Front Microbiol 2014; 5:685. [PMID: 25566205 PMCID: PMC4264472 DOI: 10.3389/fmicb.2014.00685] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/21/2014] [Indexed: 12/31/2022] Open
Abstract
The hmsHFRS operon is responsible for biosynthesis and translocation of biofilm matrix exopolysaccharide. Yersinia pestis expresses the two sole diguanylate cyclases HmsT and HmsD and the sole phosphodiesterase HmsP, which are specific for biosynthesis and degradation, respectively, of 3′,5′-cyclic diguanosine monophosphate (c-di-GMP), a second messenger promoting exopolysaccharide production. In this work, the phenotypic assays indicates that Y. pestis sRNA HmsB enhances the production of c-di-GMP, exopolysaccharide, and biofilm. Further gene regulation experiments disclose that HmsB stimulates the expression of hmsB, hmsCDE, hmsT, and hmsHFRS but represses that of hmsP. HmsB most likely acts as a major activator of biofilm formation in Y. pestis. This is the first report of regulation of Yersinia biofilm formation by a sRNA. Data presented here will promote us to gain a deeper understanding of the complex regulatory circuits controlling Yersinia biofilm formation.
Collapse
Affiliation(s)
- Nan Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Shi Qu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Haihong Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Lei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Yiquan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Li Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| |
Collapse
|
12
|
Lu P, Zhang Y, Hu Y, Francis MS, Chen S. A cis-encoded sRNA controls the expression of fabH2 in Yersinia. FEBS Lett 2014; 588:1961-6. [PMID: 24735725 DOI: 10.1016/j.febslet.2014.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/10/2014] [Accepted: 04/03/2014] [Indexed: 11/16/2022]
Abstract
YsrH is a novel cis-encoded sRNA located on the opposite strand to fabH2, which is essential for fatty acid biosynthesis in bacteria. In this study, YsrH-mediated regulation of fabH2 expression was investigated in Yersinia pseudotuberculosis. Constitutive and inducible over-expression of YsrH decreased the mRNA level of fabH2, while expression of downstream fabD and fabG remained unaffected. Polynucleotide phosphorylase (PNPase) also played an important role in this regulation process by mediating YsrH decay in the exponential phase. Thus, our data defines a cis-encoded sRNA that regulates fatty acid synthesis via a regulatory mechanism also involving PNPase.
Collapse
Affiliation(s)
- Pei Lu
- Key Laboratory of Etiology and Biosafety for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yong Zhang
- Key Laboratory of Etiology and Biosafety for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yangbo Hu
- Key Laboratory of Etiology and Biosafety for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Matthew S Francis
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, SE-901 87 Umeå, Sweden
| | - Shiyun Chen
- Key Laboratory of Etiology and Biosafety for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
13
|
Genome-wide analysis of small RNAs expressed by Yersinia pestis identifies a regulator of the Yop-Ysc type III secretion system. J Bacteriol 2014; 196:1659-70. [PMID: 24532772 DOI: 10.1128/jb.01456-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Small noncoding RNA (sRNA) molecules are integral components of the regulatory machinery for many bacterial species and are known to posttranscriptionally regulate metabolic and stress-response pathways, quorum sensing, virulence factors, and more. The Yop-Ysc type III secretion system (T3SS) is a critical virulence component for the pathogenic Yersinia species, and the regulation of this system is tightly controlled at each step from transcription to translocation of effectors into host cells. The contribution of sRNAs to the regulation of the T3SS in Yersinia has been largely unstudied, however. Previously, our lab identified a role for the sRNA chaperone protein Hfq in the regulation of components of the T3SS in the gastrointestinal pathogen Yersinia pseudotuberculosis. Here we present data demonstrating a similar requirement for Hfq in the closely related species Yersinia pestis. Through deep sequencing analysis of the Y. pestis sRNA-ome, we found 63 previously unidentified putative sRNAs in this species. We identified a Yersinia-specific sRNA, Ysr141, carried by the T3SS plasmid pCD1 that is required for the production of multiple T3SS proteins. In addition, we show that Ysr141 targets an untranslated region upstream of yopJ to posttranscriptionally activate the synthesis of the YopJ protein. Furthermore, Ysr141 may be an unstable and/or processed sRNA, which could contribute to its function in the regulation of the T3SS. The discovery of an sRNA that influences the synthesis of the T3SS adds an additional layer of regulation to this tightly controlled virulence determinant of Y. pestis.
Collapse
|
14
|
Rosenzweig JA, Chopra AK. The exoribonuclease Polynucleotide Phosphorylase influences the virulence and stress responses of yersiniae and many other pathogens. Front Cell Infect Microbiol 2013; 3:81. [PMID: 24312901 PMCID: PMC3832800 DOI: 10.3389/fcimb.2013.00081] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/30/2013] [Indexed: 11/30/2022] Open
Abstract
Microbes are incessantly challenged by both biotic and abiotic stressors threatening their existence. Therefore, bacterial pathogens must possess mechanisms to successfully subvert host immune defenses as well as overcome the stress associated with host-cell encounters. To achieve this, bacterial pathogens typically experience a genetic re-programming whereby anti-host/stress factors become expressed and eventually translated into effector proteins. In that vein, the bacterial host-cell induced stress-response is similar to any other abiotic stress to which bacteria respond by up-regulating specific stress-responsive genes. Following the stress encounter, bacteria must degrade unnecessary stress responsive transcripts through RNA decay mechanisms. The three pathogenic yersiniae (Yersinia pestis, Y. pseudo-tuberculosis, and Y. enterocolitica) are all psychrotropic bacteria capable of growth at 4°C; however, cold growth is dependent on the presence of an exoribonuclease, polynucleotide phosphorylase (PNPase). PNPase has also been implicated as a virulence factor in several notable pathogens including the salmonellae, Helicobacter pylori, and the yersiniae [where it typically influences the type three secretion system (TTSS)]. Further, PNPase has been shown to associate with ribonuclease E (endoribonuclease), RhlB (RNA helicase), and enolase (glycolytic enzyme) in several Gram-negative bacteria forming a large, multi-protein complex known as the RNA degradosome. This review will highlight studies demonstrating the influence of PNPase on the virulence potentials and stress responses of various bacterial pathogens as well as focusing on the degradosome-dependent and -independent roles played by PNPase in yersiniae stress responses.
Collapse
Affiliation(s)
- Jason A Rosenzweig
- Department of Biology, Center for Bionanotechnology and Environmental Research, Texas Southern University Houston, TX, USA ; Department of Environmental and Interdisciplinary Sciences, Texas Southern University Houston, TX, USA
| | | |
Collapse
|
15
|
Yan Y, Su S, Meng X, Ji X, Qu Y, Liu Z, Wang X, Cui Y, Deng Z, Zhou D, Jiang W, Yang R, Han Y. Determination of sRNA expressions by RNA-seq in Yersinia pestis grown in vitro and during infection. PLoS One 2013; 8:e74495. [PMID: 24040259 PMCID: PMC3770706 DOI: 10.1371/journal.pone.0074495] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 08/02/2013] [Indexed: 12/21/2022] Open
Abstract
Background Small non-coding RNAs (sRNAs) facilitate host-microbe interactions. They have a central function in the post-transcriptional regulation during pathogenic lifestyles. Hfq, an RNA-binding protein that many sRNAs act in conjunction with, is required for Y. pestis pathogenesis. However, information on how Yersinia pestis modulates the expression of sRNAs during infection is largely unknown. Methodology and Principal Findings We used RNA-seq technology to identify the sRNA candidates expressed from Y. pestis grown invitro and in the infected lungs of mice. A total of 104 sRNAs were found, including 26 previously annotated sRNAs, by searching against the Rfam database with 78 novel sRNA candidates. Approximately 89% (93/104) of these sRNAs from Y. pestis are shared with its ancestor Y. pseudotuberculosis. Ninety-seven percent of these sRNAs (101/104) are shared among more than 80 sequenced genomes of 135 Y. pestis strains. These 78 novel sRNAs include 62 intergenic and 16 antisense sRNAs. Fourteen sRNAs were selected for verification by independent Northern blot analysis. Results showed that nine selected sRNA transcripts were Hfq-dependent. Interestingly, three novel sRNAs were identified as new members of the transcription factor CRP regulon. Semi-quantitative analysis revealed that Y. pestis from the infected lungs induced the expressions of six sRNAs including RyhB1, RyhB2, CyaR/RyeE, 6S RNA, RybB and sR039 and repressed the expressions of four sRNAs, including CsrB, CsrC, 4.5S RNA and sR027. Conclusions and Significance This study is the first attempt to subject RNA from Y. pestis-infected samples to direct high-throughput sequencing. Many novel sRNAs were identified and the expression patterns of relevant sRNAs in Y. pestis during invitro growth and invivo infection were revealed. The annotated sRNAs accounted for the most abundant sRNAs either expressed in bacteria grown invitro or differentially expressed in the infected lungs. These findings suggested these sRNAs may have important functions in Y. pestis physiology or pathogenesis.
Collapse
Affiliation(s)
- Yanfeng Yan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shanchun Su
- Microbiology Laboratory, Sichuan Agricultural University, Yaan, Sichuan province, China
| | - Xiangrong Meng
- Clinical Laboratory, Huzhong Hispital, Guangzhou, Guangdong province, China
| | - Xiaolan Ji
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yi Qu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zizhong Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaoyi Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhongliang Deng
- Department of Sanitary Inspection, School of Public Health, University of South China, Hengyang, Hunan province, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wencan Jiang
- Microbiology Laboratory, Sichuan Agricultural University, Yaan, Sichuan province, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- * E-mail: (YH); (RY)
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- * E-mail: (YH); (RY)
| |
Collapse
|
16
|
Harris JF, Micheva-Viteva S, Li N, Hong-Geller E. Small RNA-mediated regulation of host-pathogen interactions. Virulence 2013; 4:785-95. [PMID: 23958954 PMCID: PMC3925712 DOI: 10.4161/viru.26119] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The rise in antimicrobial drug resistance, alongside the failure of conventional research to discover new antibiotics, will inevitably lead to a public health crisis that can drastically curtail our ability to combat infectious disease. Thus, there is a great global health need for development of antimicrobial countermeasures that target novel cell molecules or processes. RNA represents a largely unexploited category of potential targets for antimicrobial design. For decades, control of cellular behavior was thought to be the exclusive purview of protein-based regulators. The recent discovery of small RNAs (sRNAs) as a universal class of powerful RNA-based regulatory biomolecules has the potential to revolutionize our understanding of gene regulation in practically all biological functions. In general, sRNAs regulate gene expression by base-pairing with multiple downstream target mRNAs to prevent translation of mRNA into protein. In this review, we will discuss recent studies that document discovery of bacterial, viral, and human sRNAs and their molecular mechanisms in regulation of pathogen virulence and host immunity. Illuminating the functional roles of sRNAs in virulence and host immunity can provide the fundamental knowledge for development of next-generation antibiotics using sRNAs as novel targets.
Collapse
Affiliation(s)
- Jennifer F Harris
- Bioscience Division; Los Alamos National Laboratory; Los Alamos, NM USA
| | | | - Nan Li
- Bioscience Division; Los Alamos National Laboratory; Los Alamos, NM USA
| | | |
Collapse
|
17
|
Yang R, Du Z, Han Y, Zhou L, Song Y, Zhou D, Cui Y. Omics strategies for revealing Yersinia pestis virulence. Front Cell Infect Microbiol 2012; 2:157. [PMID: 23248778 PMCID: PMC3521224 DOI: 10.3389/fcimb.2012.00157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/27/2012] [Indexed: 01/12/2023] Open
Abstract
Omics has remarkably changed the way we investigate and understand life. Omics differs from traditional hypothesis-driven research because it is a discovery-driven approach. Mass datasets produced from omics-based studies require experts from different fields to reveal the salient features behind these data. In this review, we summarize omics-driven studies to reveal the virulence features of Yersinia pestis through genomics, trascriptomics, proteomics, interactomics, etc. These studies serve as foundations for further hypothesis-driven research and help us gain insight into Y. pestis pathogenesis.
Collapse
Affiliation(s)
- Ruifu Yang
- Beijing Institute of Microbiology and Epidemiology Beijing, China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Schiano CA, Lathem WW. Post-transcriptional regulation of gene expression in Yersinia species. Front Cell Infect Microbiol 2012; 2:129. [PMID: 23162797 PMCID: PMC3493969 DOI: 10.3389/fcimb.2012.00129] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/03/2012] [Indexed: 11/13/2022] Open
Abstract
Proper regulation of gene expression is required by bacterial pathogens to respond to continually changing environmental conditions and the host response during the infectious process. While transcriptional regulation is perhaps the most well understood form of controlling gene expression, recent studies have demonstrated the importance of post-transcriptional mechanisms of gene regulation that allow for more refined management of the bacterial response to host conditions. Yersinia species of bacteria are known to use various forms of post-transcriptional regulation for control of many virulence-associated genes. These include regulation by cis- and trans-acting small non-coding RNAs, RNA-binding proteins, RNases, and thermoswitches. The effects of these and other regulatory mechanisms on Yersinia physiology can be profound and have been shown to influence type III secretion, motility, biofilm formation, host cell invasion, intracellular survival and replication, and more. In this review, we discuss these and other post-transcriptional mechanisms and their influence on virulence gene regulation, with a particular emphasis on how these processes influence the virulence of Yersinia in the host.
Collapse
Affiliation(s)
- Chelsea A Schiano
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine Chicago, IL, USA
| | | |
Collapse
|