1
|
Goyal M, Hauben L, Pouseele H, Jaillard M, De Bruyne K, van Belkum A, Goering R. Retrospective Definition of Clostridioides difficile PCR Ribotypes on the Basis of Whole Genome Polymorphisms: A Proof of Principle Study. Diagnostics (Basel) 2020; 10:diagnostics10121078. [PMID: 33322677 PMCID: PMC7764247 DOI: 10.3390/diagnostics10121078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
Clostridioides difficile is a cause of health care-associated infections. The epidemiological study of C. difficile infection (CDI) traditionally involves PCR ribotyping. However, ribotyping will be increasingly replaced by whole genome sequencing (WGS). This implies that WGS types need correlation with classical ribotypes (RTs) in order to perform retrospective clinical studies. Here, we selected genomes of hyper-virulent C. difficile strains of RT001, RT017, RT027, RT078, and RT106 to try and identify new discriminatory markers using in silico ribotyping PCR and De Bruijn graph-based Genome Wide Association Studies (DBGWAS). First, in silico ribotyping PCR was performed using reference primer sequences and 30 C. difficile genomes of the five different RTs identified above. Second, discriminatory genomic markers were sought with DBGWAS using a set of 160 independent C. difficile genomes (14 ribotypes). RT-specific genetic polymorphisms were annotated and validated for their specificity and sensitivity against a larger dataset of 2425 C. difficile genomes covering 132 different RTs. In silico PCR ribotyping was unsuccessful due to non-specific or missing theoretical RT PCR fragments. More successfully, DBGWAS discovered a total of 47 new markers (13 in RT017, 12 in RT078, 9 in RT106, 7 in RT027, and 6 in RT001) with minimum q-values of 0 to 7.40 × 10-5, indicating excellent marker selectivity. The specificity and sensitivity of individual markers ranged between 0.92 and 1.0 but increased to 1 by combining two markers, hence providing undisputed RT identification based on a single genome sequence. Markers were scattered throughout the C. difficile genome in intra- and intergenic regions. We propose here a set of new genomic polymorphisms that efficiently identify five hyper-virulent RTs utilizing WGS data only. Further studies need to show whether this initial proof-of-principle observation can be extended to all 600 existing RTs.
Collapse
Affiliation(s)
- Manisha Goyal
- BioMérieux, Open Innovation and Partnerships, 3 Route du Port Michaud, 38390 La Balme Les Grottes, France;
| | - Lysiane Hauben
- BioMérieux, Applied Maths NV, 9830 Sint-Martens-Latem, Belgium; (L.H.); (K.D.B.)
| | | | | | - Katrien De Bruyne
- BioMérieux, Applied Maths NV, 9830 Sint-Martens-Latem, Belgium; (L.H.); (K.D.B.)
| | - Alex van Belkum
- BioMérieux, Open Innovation and Partnerships, 3 Route du Port Michaud, 38390 La Balme Les Grottes, France;
- Correspondence: ; Tel.: +33-609-487-905
| | - Richard Goering
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA;
| |
Collapse
|
2
|
Eckert C, Devallière T, Syed-Zaidi R, Lalande V, Barbut F. Evaluation of a novel molecular assay to diagnose toxigenic strains of Clostridium difficile. Anaerobe 2018; 52:111-114. [DOI: 10.1016/j.anaerobe.2018.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 11/15/2022]
|
3
|
Sensitivity of Single-Molecule Array Assays for Detection of Clostridium difficile Toxins in Comparison to Conventional Laboratory Testing Algorithms. J Clin Microbiol 2018; 56:JCM.00452-18. [PMID: 29898996 PMCID: PMC6062787 DOI: 10.1128/jcm.00452-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/01/2018] [Indexed: 01/05/2023] Open
Abstract
Guidelines recommend the use of an algorithm for the laboratory diagnosis of Clostridium difficile infection (CDI). Enzyme immunoassays (EIAs) detecting C. difficile toxins cannot be used as standalone tests due to suboptimal sensitivity, and molecular tests suffer from nonspecificity by detecting colonization. Guidelines recommend the use of an algorithm for the laboratory diagnosis of Clostridium difficile infection (CDI). Enzyme immunoassays (EIAs) detecting C. difficile toxins cannot be used as standalone tests due to suboptimal sensitivity, and molecular tests suffer from nonspecificity by detecting colonization. Sensitive immunoassays have recently been developed to improve and simplify CDI diagnosis. Assays detecting CD toxins have been developed using single-molecule array (SIMOA) technology. SIMOA performance was assessed relative to a laboratory case definition of CDI defined by positive glutamate dehydrogenase (GDH) screen and cell cytotoxicity neutralizing assay (CCNA). Samples were tested with SIMOA assays and a commercial toxin EIA to compare performance, with discrepancy resolution using a commercial nucleic acid-based test and a second cell cytotoxicity assay. The SIMOA toxin A and toxin B assays showed limits of detection of 0.6 and 2.9 pg/ml, respectively, and intra-assay coefficients of variation of less than 10%. The optimal clinical thresholds for the toxin A and toxin B assays were determined to be 22.1 and 18.8 pg/ml, respectively, with resultant sensitivities of 84.8 and 95.5%. In contrast, a high-performing EIA toxin test had a sensitivity of 71.2%. Thus, the SIMOA assays detected toxins in 24% more samples with laboratory-defined CDI than the high performing toxin EIA (95% [63/66] versus 71% [47/66]). This study shows that SIMOA C. difficile toxin assays have a higher sensitivity than currently available toxin EIA and have the potential to improve CDI diagnosis.
Collapse
|
4
|
Abstract
Diarrhea constitutes a frequent and often debilitating complication of allogeneic hematopoietic cell transplantation (alloHCT). Especially when accompanied by jaundice, skin rash, and symptoms of the upper gastrointestinal tract, diarrhea strongly suggests emergence of acute graft-versus-host disease (GvHD), which is a serious immune complication of the procedure, with possible fatal consequences. However, especially when diarrhea occurs as an isolated symptom, the other causes must be excluded before initiation of GvHD treatment with immune-suppressive drugs. In this article, a broad overview of the literature of different causes of diarrhea in the setting of alloHCT is provided, revealing causes and presentations different from those observed in the general population. We discuss gastrointestinal GvHD with a special focus on biomarkers, but also uncover underlying infectious: viral, bacterial, and parasitic as well as toxic causes of diarrhea. Finally, we suggest a practical algorithm of approach to patients with diarrhea after alloHCT, which may help to establish a proper diagnosis and initiate a causative treatment.
Collapse
|
5
|
Martínez-Meléndez A, Camacho-Ortiz A, Morfin-Otero R, Maldonado-Garza HJ, Villarreal-Treviño L, Garza-González E. Current knowledge on the laboratory diagnosis of Clostridium difficile infection. World J Gastroenterol 2017; 23:1552-1567. [PMID: 28321156 PMCID: PMC5340807 DOI: 10.3748/wjg.v23.i9.1552] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/21/2017] [Accepted: 02/17/2017] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile (C. difficile) is a spore-forming, toxin-producing, gram-positive anaerobic bacterium that is the principal etiologic agent of antibiotic-associated diarrhea. Infection with C. difficile (CDI) is characterized by diarrhea in clinical syndromes that vary from self-limited to mild or severe. Since its initial recognition as the causative agent of pseudomembranous colitis, C. difficile has spread around the world. CDI is one of the most common healthcare-associated infections and a significant cause of morbidity and mortality among older adult hospitalized patients. Due to extensive antibiotic usage, the number of CDIs has increased. Diagnosis of CDI is often difficult and has a substantial impact on the management of patients with the disease, mainly with regards to antibiotic management. The diagnosis of CDI is primarily based on the clinical signs and symptoms and is only confirmed by laboratory testing. Despite the high burden of CDI and the increasing interest in the disease, episodes of CDI are often misdiagnosed. The reasons for misdiagnosis are the lack of clinical suspicion or the use of inappropriate tests. The proper diagnosis of CDI reduces transmission, prevents inadequate or unnecessary treatments, and assures best antibiotic treatment. We review the options for the laboratory diagnosis of CDI within the settings of the most accepted guidelines for CDI diagnosis, treatment, and prevention of CDI.
Collapse
|
6
|
Beal SG, Assarzadegan N, Rand KH. Sample-to-result molecular infectious disease assays: clinical implications, limitations and potential. Expert Rev Mol Diagn 2016; 16:323-41. [PMID: 26689497 PMCID: PMC7103687 DOI: 10.1586/14737159.2016.1134325] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/17/2015] [Indexed: 01/01/2023]
Abstract
Molecular infectious disease diagnostic tests have undergone major advances in the past decade and will continue to rapidly evolve. Assays have become extraordinarily simple to perform, eliminating the need for pre-analytic sample preparation and post-amplification analysis. This allows these tests to be performed in settings without sophisticated expertise in molecular biology, including locations with limited resources. Additionally, the sensitivity and specificity of these assays is superb and many offer extremely fast turn-around times. These tests have major impacts on patient care, but also have some limitations.
Collapse
Affiliation(s)
- Stacy G. Beal
- Department of Pathology, Immunology and Laboratory Medicine,
University of Florida College of Medicine, Gainesville, FL,
USA
| | - Naziheh Assarzadegan
- Department of Pathology, Immunology and Laboratory Medicine,
University of Florida College of Medicine, Gainesville, FL,
USA
| | - Kenneth H. Rand
- Department of Pathology, Immunology and Laboratory Medicine,
University of Florida College of Medicine, Gainesville, FL,
USA
| |
Collapse
|
7
|
Molecular Diagnostics for Clostridium difficile. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Prévalence des infections à Clostridium difficile chez les patients hospitalisés avec une diarrhée : résultats d’une étude française prospective multicentrique. Presse Med 2015; 44:e75-83. [DOI: 10.1016/j.lpm.2014.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/28/2014] [Accepted: 09/22/2014] [Indexed: 01/05/2023] Open
|
9
|
Bibbò S, Lopetuso LR, Ianiro G, Di Rienzo T, Gasbarrini A, Cammarota G. Role of microbiota and innate immunity in recurrent Clostridium difficile infection. J Immunol Res 2014; 2014:462740. [PMID: 24995345 PMCID: PMC4068057 DOI: 10.1155/2014/462740] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/20/2014] [Indexed: 12/17/2022] Open
Abstract
Recurrent Clostridium difficile infection represents a burdensome clinical issue whose epidemiology is increasing worldwide. The pathogenesis is not yet completely known. Recent observations suggest that the alteration of the intestinal microbiota and impaired innate immunity may play a leading role in the development of recurrent infection. Various factors can cause dysbiosis. The causes most involved in the process are antibiotics, NSAIDs, acid suppressing therapies, and age. Gut microbiota impairment can favor Clostridium difficile infection through several mechanisms, such as the alteration of fermentative metabolism (especially SCFAs), the alteration of bile acid metabolism, and the imbalance of antimicrobial substances production. These factors alter the intestinal homeostasis promoting the development of an ecological niche for Clostridium difficile and of the modulation of immune response. Moreover, the intestinal dysbiosis can promote a proinflammatory environment, whereas Clostridium difficile itself modulates the innate immunity through both toxin-dependent and toxin-independent mechanisms. In this narrative review, we discuss how the intestinal microbiota modifications and the modulation of innate immune response can lead to and exacerbate Clostridium difficile infection.
Collapse
Affiliation(s)
- Stefano Bibbò
- A. Gemelli Hospital, Division of Internal Medicine and Gastroenterology, Department of Internal Medicine, School of Medicine and Surgery, Catholic University, 8, 00168 Rome, Italy
| | - Loris Riccardo Lopetuso
- A. Gemelli Hospital, Division of Internal Medicine and Gastroenterology, Department of Internal Medicine, School of Medicine and Surgery, Catholic University, 8, 00168 Rome, Italy
| | - Gianluca Ianiro
- A. Gemelli Hospital, Division of Internal Medicine and Gastroenterology, Department of Internal Medicine, School of Medicine and Surgery, Catholic University, 8, 00168 Rome, Italy
| | - Teresa Di Rienzo
- A. Gemelli Hospital, Division of Internal Medicine and Gastroenterology, Department of Internal Medicine, School of Medicine and Surgery, Catholic University, 8, 00168 Rome, Italy
| | - Antonio Gasbarrini
- A. Gemelli Hospital, Division of Internal Medicine and Gastroenterology, Department of Internal Medicine, School of Medicine and Surgery, Catholic University, 8, 00168 Rome, Italy
| | - Giovanni Cammarota
- A. Gemelli Hospital, Division of Internal Medicine and Gastroenterology, Department of Internal Medicine, School of Medicine and Surgery, Catholic University, 8, 00168 Rome, Italy
| |
Collapse
|