1
|
Jean SS, Harnod D, Hsueh PR. Global Threat of Carbapenem-Resistant Gram-Negative Bacteria. Front Cell Infect Microbiol 2022; 12:823684. [PMID: 35372099 PMCID: PMC8965008 DOI: 10.3389/fcimb.2022.823684] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/15/2022] [Indexed: 01/08/2023] Open
Abstract
Infections caused by multidrug-resistant (MDR) and extensively drug-resistant (XDR) Gram-negative bacteria (GNB), including carbapenem-resistant (CR) Enterobacterales (CRE; harboring mainly blaKPC, blaNDM, and blaOXA-48-like genes), CR- or MDR/XDR-Pseudomonas aeruginosa (production of VIM, IMP, or NDM carbapenemases combined with porin alteration), and Acinetobacter baumannii complex (producing mainly OXA-23, OXA-58-like carbapenemases), have gradually worsened and become a major challenge to public health because of limited antibiotic choice and high case-fatality rates. Diverse MDR/XDR-GNB isolates have been predominantly cultured from inpatients and hospital equipment/settings, but CRE has also been identified in community settings and long-term care facilities. Several CRE outbreaks cost hospitals and healthcare institutions huge economic burdens for disinfection and containment of their disseminations. Parenteral polymyxin B/E has been observed to have a poor pharmacokinetic profile for the treatment of CR- and XDR-GNB. It has been determined that tigecycline is suitable for the treatment of bloodstream infections owing to GNB, with a minimum inhibitory concentration of ≤ 0.5 mg/L. Ceftazidime-avibactam is a last-resort antibiotic against GNB of Ambler class A/C/D enzyme-producers and a majority of CR-P. aeruginosa isolates. Furthermore, ceftolozane-tazobactam is shown to exhibit excellent in vitro activity against CR- and XDR-P. aeruginosa isolates. Several pharmaceuticals have devoted to exploring novel antibiotics to combat these troublesome XDR-GNBs. Nevertheless, only few antibiotics are shown to be effective in vitro against CR/XDR-A. baumannii complex isolates. In this era of antibiotic pipelines, strict implementation of antibiotic stewardship is as important as in-time isolation cohorts in limiting the spread of CR/XDR-GNB and alleviating the worsening trends of resistance.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Emergency and Critical Care Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
- Department of Pharmacy, College of Pharmacy and Health care, Tajen University, Pingtung, Taiwan
| | - Dorji Harnod
- Division of Critical Care Medicine, Department of Emergency and Critical Care Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Ph.D Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- *Correspondence: Po-Ren Hsueh,
| |
Collapse
|
2
|
Jean SS, Chang YC, Lin WC, Lee WS, Hsueh PR, Hsu CW. Epidemiology, Treatment, and Prevention of Nosocomial Bacterial Pneumonia. J Clin Med 2020; 9:jcm9010275. [PMID: 31963877 PMCID: PMC7019939 DOI: 10.3390/jcm9010275] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/17/2022] Open
Abstract
Septicaemia likely results in high case-fatality rates in the present multidrug-resistant (MDR) era. Amongst them are hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP), two frequent fatal septicaemic entities amongst hospitalised patients. We reviewed the PubMed database to identify the common organisms implicated in HAP/VAP, to explore the respective risk factors, and to find the appropriate antibiotic choice. Apart from methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa, extended-spectrum β-lactamase-producing Enterobacteriaceae spp., MDR or extensively drug-resistant (XDR)-Acinetobacter baumannii complex spp., followed by Stenotrophomonas maltophilia, Chryseobacterium indologenes, and Elizabethkingia meningoseptica are ranked as the top Gram-negative bacteria (GNB) implicated in HAP/VAP. Carbapenem-resistant Enterobacteriaceae notably emerged as an important concern in HAP/VAP. The above-mentioned pathogens have respective risk factors involved in their acquisition. In the present XDR era, tigecycline, colistin, and ceftazidime-avibactam are antibiotics effective against the Klebsiella pneumoniae carbapenemase and oxacillinase producers amongst the Enterobacteriaceae isolates implicated in HAP/VAP. Antibiotic combination regimens are recommended in the treatment of MDR/XDR-P. aeruginosa or A. baumannii complex isolates. Some special patient populations need prolonged courses (>7-day) and/or a combination regimen of antibiotic therapy. Implementation of an antibiotic stewardship policy and the measures recommended by the United States (US) Institute for Healthcare were shown to decrease the incidence rates of HAP/VAP substantially.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Wan Fang Hospital, Taipei Medicine University, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-2-29307930 (ext. 1262)
| | - Yin-Chun Chang
- Division of Thoracic Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan; (Y.-C.C.); (W.-C.L.)
| | - Wei-Cheng Lin
- Division of Thoracic Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan; (Y.-C.C.); (W.-C.L.)
| | - Wen-Sen Lee
- Division of Infectious Diseases, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan;
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan;
- Department Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Chin-Wan Hsu
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Wan Fang Hospital, Taipei Medicine University, Taipei 110, Taiwan
| |
Collapse
|
3
|
Jean SS, Lee WS, Lam C, Hsu CW, Chen RJ, Hsueh PR. Carbapenemase-producing Gram-negative bacteria: current epidemics, antimicrobial susceptibility and treatment options. Future Microbiol 2015; 10:407-25. [DOI: 10.2217/fmb.14.135] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT Carbapenemases, with versatile hydrolytic capacity against β-lactams, are now an important cause of resistance of Gram-negative bacteria. The genes encoding for the acquired carbapenemases are associated with a high potential for dissemination. In addition, infections due to Gram-negative bacteria with acquired carbapenemase production would lead to high clinical mortality rates. Of the acquired carbapenemases, Klebsiella pneumoniae carbapenemase (Ambler class A), Verona integron-encoded metallo-β-lactamase (Ambler class B), New Delhi metallo-β-lactamase (Ambler class B) and many OXA enzymes (OXA-23-like, OXA-24-like, OXA-48-like, OXA-58-like, class D) are considered to be responsible for the worldwide resistance epidemics. As compared with monotherapy with colistin or tigecycline, combination therapy has been shown to effectively lower case-fatality rates. However, development of new antibiotics is crucial in the present pandrug-resistant era.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Emergency Medicine, Wan Fang Hospital, Taipei Medical University; and Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Sen Lee
- Division of infectious Diseases, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Carlos Lam
- Department of Emergency Medicine, Wan Fang Hospital, Taipei Medical University; and Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chin-Wang Hsu
- Department of Emergency & Critical Medicine, Taipei Medical University, Wan Fang Hospital, Taipei, Taiwan
| | - Ray-Jade Chen
- Department of Emergency & Critical Medicine, Taipei Medical University, Wan Fang Hospital, Taipei, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine & Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
4
|
Jean SS, Lee WS, Bai KJ, Yu KW, Hsu CW, Yu KW, Liao CH, Chang FY, Ko WC, Wu JJ, Chen YH, Chen YS, Liu JW, Lu MC, Liu CY, Chen RJ, Hsueh PR. Carbapenem susceptibility among Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae isolates obtained from patients in intensive care units in Taiwan in 2005, 2007, and 2009. Diagn Microbiol Infect Dis 2014; 81:290-5. [PMID: 25600841 DOI: 10.1016/j.diagmicrobio.2014.09.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 10/24/2022]
Abstract
To investigate the evolutionary trends in non-susceptibility of carbapenems against the isolates of Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae from patients hospitalized in intensive care units (ICUs) of major teaching hospitals throughout Taiwan during 2005-2009, we applied the breakpoints of MICs recommended by Clinical and Laboratory Standards Institute and European Committee on Antimicrobial Susceptibility Testing in 2013. Escalations in imipenem MIC levels for overall E. coli and E. cloacae isolates and extended-spectrum β-lactamase (ESBL)-producing K. pneumoniae isolates were noted during this period. The overall MIC levels against imipenem and meropenem for subgroups of ESBL producers of 3 Enterobacteriaceae species were significantly higher than those of respective overall groups in 2007 and 2009. Compared with meropenem, we found that significant evidence of imipenem MIC creep and evidence of extraordinarily high rates of non-susceptibility to ertapenem among isolates of 3 species in 2009 existed. The prominent rises in rates of ertapenem non-susceptibility for ESBL-producing E. coli and K. pneumoniae during 2005-2009 and rate of ESBL positivity for E. cloacae between 4 years were notably found. Based on our findings, ertapenem should be used cautiously in management of the ICU infections caused by these potentially ESBL-producing Enterobacteriaceae isolates in Taiwan.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Emergency Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wen-Sen Lee
- Division of infectious Diseases, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Jen Bai
- Department of Pulmonary and Critical Care Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kwok-Woon Yu
- Department of Internal Medicine, Pathology and Laboratory Medicine, Taipei Veterans General Hospital, National Yang-Ming University, Taipei, Taiwan
| | - Chin-Wang Hsu
- Department of Emergency and Critical Medicine, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| | - Kwok-Woon Yu
- Department of Emergency Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chun-Hsing Liao
- Department of Internal Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Feng-Yi Chang
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center (NDMC), Taipei, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng-Kung University Hospital, Tainan, Taiwan
| | - Jiunn-Jong Wu
- School of Medical Technology, National Cheng-Kung University College of Medicine, Tainan, Taiwan
| | - Yen-Hsu Chen
- Department of Internal Medicine, Kaohsiung Medical University Hospital, and Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yao-Shen Chen
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaoshiung, Taiwan
| | - Jien-Wei Liu
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung Medical College, Kaohsiung, Taiwan
| | - Min-Chi Lu
- Department of Laboratory Medicine and Internal Medicine, Chung Shan Medical and Dental University, Taichung, Taiwan
| | - Cheng-Yi Liu
- Division of Infectious Diseases, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ray-Jade Chen
- Department of Emergency and Critical Care Medicine, Taipei Municipal WanFang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|