1
|
Lin Q, Sheng M, Kang Z, Xu J, Gao Y, Ma S, Xin B, Tan Y. Synergistic and antibiofilm activity of DNase I and glucose oxidase loaded chitosan nanoparticles against dual-species biofilms of Listeria monocytogenes and Salmonella. Int J Biol Macromol 2024; 269:131943. [PMID: 38688332 DOI: 10.1016/j.ijbiomac.2024.131943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 03/28/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Salmonella and Listeria monocytogenes are two of the most common foodborne pathogens in the food industry. They form dual-species biofilms, which have a higher sensitivity to antimicrobial treatment and a greater microbial adhesion. In this experiment, we loaded DNase I and glucose oxidase (GOX) on chitosan nanoparticles (CSNPs) to explore their inhibitory effects on and disruption of dual-species biofilms of Salmonella enterica and L. monocytogenes. Transmission electron microscopy (TEM) showed that CSNP-DNase-GOX and CSNPs were spherical in shape. CSNP-DNase-GOX was shifted and altered compared to the infrared peaks of CSNPs. CSNPs loaded with DNase I and GOX showed an increase in the particle size and an alteration in the polydispersity index (PDI) and the zeta potential. Compared to free DNase I or GOX, DNase I and GOX loaded on CSNPs had higher stability at different temperatures. CSNP-DNase-GOX was more effective in inhibiting dual-species biofilms than CSNP-GOX. Scanning electron microscopy (SEM) and fluorescence microscopy were used to observe the structure of the biofilm, which further illustrated that CSNP-DNase-GOX disrupted the dual-species biofilms of S. enterica and L. monocytogenes.
Collapse
Affiliation(s)
- Quan Lin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China; Shandong Technology Innovation Center of Special Food, Qingdao, China; Qingdao Special Food Research Institute, Qingdao, China
| | - Maokun Sheng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China; Shandong Technology Innovation Center of Special Food, Qingdao, China; Qingdao Special Food Research Institute, Qingdao, China
| | - Zhaodi Kang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China; Shandong Technology Innovation Center of Special Food, Qingdao, China; Qingdao Special Food Research Institute, Qingdao, China
| | - Jiaman Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China; Shandong Technology Innovation Center of Special Food, Qingdao, China; Qingdao Special Food Research Institute, Qingdao, China
| | - Yan Gao
- Marine Science Research Institute of Shandong Province (National Oceanographic Center of Qingdao), Qingdao, China
| | - Su Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Bingchang Xin
- Department of Cariology and Endodontology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yulong Tan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China; Shandong Technology Innovation Center of Special Food, Qingdao, China; Qingdao Special Food Research Institute, Qingdao, China.
| |
Collapse
|
2
|
Corre M, Boehm V, Besic V, Kurowska A, Viry A, Mohammad A, Sénamaud-Beaufort C, Thomas-Chollier M, Lebreton A. Alternative splicing induced by bacterial pore-forming toxins sharpens CIRBP-mediated cell response to Listeria infection. Nucleic Acids Res 2023; 51:12459-12475. [PMID: 37941135 PMCID: PMC10711537 DOI: 10.1093/nar/gkad1033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023] Open
Abstract
Cell autonomous responses to intracellular bacteria largely depend on reorganization of gene expression. To gain isoform-level resolution of these modes of regulation, we combined long- and short-read transcriptomic analyses of the response of intestinal epithelial cells to infection by the foodborne pathogen Listeria monocytogenes. Among the most striking isoform-based types of regulation, expression of the cellular stress response regulator CIRBP (cold-inducible RNA-binding protein) and of several SRSFs (serine/arginine-rich splicing factors) switched from canonical transcripts to nonsense-mediated decay-sensitive isoforms by inclusion of 'poison exons'. We showed that damage to host cell membranes caused by bacterial pore-forming toxins (listeriolysin O, perfringolysin, streptolysin or aerolysin) led to the dephosphorylation of SRSFs via the inhibition of the kinase activity of CLK1, thereby driving CIRBP alternative splicing. CIRBP isoform usage was found to have consequences on infection, since selective repression of canonical CIRBP reduced intracellular bacterial load while that of the poison exon-containing isoform exacerbated it. Consistently, CIRBP-bound mRNAs were shifted towards stress-relevant transcripts in infected cells, with increased mRNA levels or reduced translation efficiency for some targets. Our results thus generalize the alternative splicing of CIRBP and SRSFs as a common response to biotic or abiotic stresses by extending its relevance to the context of bacterial infection.
Collapse
Affiliation(s)
- Morgane Corre
- Group Bacterial infection, response & dynamics, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Volker Boehm
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Vinko Besic
- Group Bacterial infection, response & dynamics, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Anna Kurowska
- Group Bacterial infection, response & dynamics, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Anouk Viry
- Group Bacterial infection, response & dynamics, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Ammara Mohammad
- GenomiqueENS, Institut de Biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Catherine Sénamaud-Beaufort
- GenomiqueENS, Institut de Biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Morgane Thomas-Chollier
- Group Bacterial infection, response & dynamics, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- GenomiqueENS, Institut de Biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Alice Lebreton
- Group Bacterial infection, response & dynamics, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- INRAE, Micalis Institute, 78350 Jouy-en-Josas, France
| |
Collapse
|
3
|
Combination immunotherapy with two attenuated Listeria strains carrying shuffled HPV-16 E6E7 protein causes tumor regression in a mouse tumor model. Sci Rep 2021; 11:13404. [PMID: 34183739 PMCID: PMC8238941 DOI: 10.1038/s41598-021-92875-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer continues to impose a heavy burden worldwide, and human papilloma virus (HPV) infection, especially persistent infection with type 16 (HPV-16), is known to be the primary etiological factor. Therapeutic vaccines are urgently needed because prophylactic vaccines are ineffective at clearing pre-existing HPV infection. Here, two recombinant Listeria strains (LMΔ-E6E7 & LIΔ-E6E7) with deletions of the actA and plcB genes, expressing the shuffled HPV-16 E6E7 protein were constructed. The strains were delivered into the spleen and liver by intravenous inoculation, induced antigen-specific cellular immunity and were eliminated completely from the internal organs several days later. Intravenously treating with single strain for three times, or with both strains alternately for three times significantly reduced the tumor size and prolonged the survival time of model mice. Combination immunotherapy with two strains seemed more effective than immunotherapy with single strain in that it enhanced the survival of the mice, and the LMΔ-E6E7-prime-LIΔ-E6E7-boost strategy showed significant stronger efficacy than single treatment with the LIΔ-E6E7 strain. The antitumor effect of this treatment might due to its ability to increase the proportion of CD8+ T cells and reduce the proportion of T regulatory cells (Tregs) in the intratumoral milieu. This is the first report regarding Listeria ivanovii-based therapeutic vaccine candidate against cervical cancer. Most importantly we are the first to confirm that combination therapy with two different recombinant Listeria strains has a more satisfactory antitumor effect than administration of a single strain. Thus, we propose a novel prime-boost treatment strategy.
Collapse
|
4
|
Duan F, Chen J, Yao H, Wang Y, Jia Y, Ling Z, Feng Y, Pan Z, Yin Y, Jiao X. Enhanced therapeutic efficacy of Listeria-based cancer vaccine with codon-optimized HPV16 E7. Hum Vaccin Immunother 2021; 17:1568-1577. [PMID: 33449866 DOI: 10.1080/21645515.2020.1839291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cervical cancer is a leading cause of high mortality in women in developing countries and has a serious impact on women's health. Human papilloma virus (HPV) prophylactic vaccines have been produced and may hold promise for reducing the incidence of cervical cancer. However, the limitations of current HPV vaccine strategies make the development of HPV therapeutic vaccines particularly important for the treatment of HPV related lesions. Our previous work has demonstrated that LM4Δhly::E7 was safe and effective in inducing antitumor effect by antigen-specific cellular immune responses and direct killing of tumor cell on a cervical cancer model. In this study, the codon usage effect of a novel Listeria-based cervical cancer vaccine LM4Δhly::E7-1, was evaluated for effects of codon-optimized E7 expression, cellular immune response and therapeutic efficacy in a tumor-bearing murine model. Our data demonstrated that up-regulated expression of E7 was strikingly elevated by codon usage optimization, and thus induced significantly higher Th1-biased immunity, lymphocyte proliferation, and strong specific CTL activity ex-vivo compared with LM4Δhly::E7-treated mice. Furthermore, LM4Δhly::E7-1 enhanced a remarkable therapeutic effect in establishing tumors. Taken together, our results suggest that codon usage optimization is an important consideration in constructing live bacterial-vectored vaccines and is required for promoting effective T cell responses.
Collapse
Affiliation(s)
- Feifei Duan
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Jiaqi Chen
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Hao Yao
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Yuting Wang
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Yanyan Jia
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Zhiting Ling
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Youwei Feng
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Yuelan Yin
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Xin'An Jiao
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Jiangsu Province, China
| |
Collapse
|
5
|
Besic V, Habibolahi F, Noël B, Rupp S, Genovesio A, Lebreton A. Coordination of transcriptional and translational regulations in human epithelial cells infected by Listeria monocytogenes. RNA Biol 2020; 17:1492-1507. [PMID: 32584699 PMCID: PMC7549700 DOI: 10.1080/15476286.2020.1777380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/04/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
The invasion of mammalian cells by intracellular bacterial pathogens reshuffles their gene expression and functions; however, we lack dynamic insight into the distinct control levels that shape the host response. Here, we have addressed the respective contribution of transcriptional and translational regulations during a time-course of infection of human intestinal epithelial cells by an epidemic strain of Listeria monocytogenes, using transcriptome analysis paralleled with ribosome profiling. Upregulations were dominated by early transcriptional activation of pro-inflammatory genes, whereas translation inhibition appeared as the major driver of downregulations. Instead of a widespread but transient shutoff, translation inhibition affected specifically and durably transcripts encoding components of the translation machinery harbouring a 5'-terminal oligopyrimidine motif. Pre-silencing the most repressed target gene (PABPC1) slowed down the intracellular multiplication of Listeria monocytogenes, suggesting that the infected host cell can benefit from the repression of genes involved in protein synthesis and thereby better control infection.
Collapse
Affiliation(s)
- Vinko Besic
- Bacterial Infection & RNA Destiny Group, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Fatemeh Habibolahi
- Bacterial Infection & RNA Destiny Group, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
- Computational Biology and Bioinformatics Group, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Benoît Noël
- Bacterial Infection & RNA Destiny Group, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
- Computational Biology and Bioinformatics Group, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Sebastian Rupp
- Bacterial Infection & RNA Destiny Group, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Auguste Genovesio
- Computational Biology and Bioinformatics Group, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Alice Lebreton
- Bacterial Infection & RNA Destiny Group, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
- INRAE, IBENS, Paris, France
| |
Collapse
|
6
|
Adorisio S, Fierabracci A, Muscari I, Liberati AM, Ayroldi E, Migliorati G, Thuy TT, Riccardi C, Delfino DV. SUMO proteins: Guardians of immune system. J Autoimmun 2017; 84:21-28. [PMID: 28919255 DOI: 10.1016/j.jaut.2017.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/04/2017] [Accepted: 09/04/2017] [Indexed: 12/11/2022]
Abstract
Small ubiquitin-like modifier (SUMO) proteins belong to the ubiquitin-like family and act to change the function of target proteins through post-translational modifications. Through their interactions with innate immune pathways, SUMOs promote an efficient immune response to pathogenic challenge avoiding, at the same time, an excess of immune response that could lead to the development of autoimmune diseases. This report discusses the general functions of SUMO proteins; highlights SUMO involvement in the innate immune response through their role in NF-κB and interferon pathways; the involvement of SUMO proteins in autoimmune diseases; and reviews bacterial, viral, and parasitic interactions with SUMO pathways. In conclusion, we speculate that targeting SUMOs could represent a new therapeutic strategy against infections and autoimmunity.
Collapse
Affiliation(s)
- Sabrina Adorisio
- Section of Pharmacology, Department of Medicine, University of Perugia, Piazzale Severi, 06132, Perugia, Italy
| | - Alessandra Fierabracci
- Type 1 Diabetes Centre, Infectivology and Clinical Trials Research Department, Children's Hospital Bambino Gesù, Rome, Italy
| | - Isabella Muscari
- Section of Onco-hematology, University of Perugia, Santa Maria Hospital, 05100, Terni, Italy
| | - Anna Marina Liberati
- Section of Onco-hematology, University of Perugia, Santa Maria Hospital, 05100, Terni, Italy
| | - Emira Ayroldi
- Section of Pharmacology, Department of Medicine, University of Perugia, Piazzale Severi, 06132, Perugia, Italy
| | - Graziella Migliorati
- Section of Pharmacology, Department of Medicine, University of Perugia, Piazzale Severi, 06132, Perugia, Italy
| | - Trinh Thi Thuy
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Ha Noi, Viet Nam
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine, University of Perugia, Piazzale Severi, 06132, Perugia, Italy
| | - Domenico V Delfino
- Section of Pharmacology, Department of Medicine, University of Perugia, Piazzale Severi, 06132, Perugia, Italy; Foligno Nursing School, Via Oberdan 123, Foligno, PG, Italy.
| |
Collapse
|
7
|
Jia YY, Tan WJ, Duan FF, Pan ZM, Chen X, Yin YL, Jiao XA. A Genetically Modified attenuated Listeria Vaccine Expressing HPV16 E7 Kill Tumor Cells in Direct and Antigen-Specific Manner. Front Cell Infect Microbiol 2017; 7:279. [PMID: 28706878 PMCID: PMC5489629 DOI: 10.3389/fcimb.2017.00279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/06/2017] [Indexed: 01/20/2023] Open
Abstract
Attenuated Listeria monocytogenes (L. monocytogenes, LM) induces specific CD8+ and CD4+ T cell responses, and has been identified as a promising cancer vaccine vector. Cervical cancer is the third most common cancer in women worldwide, with human papillomavirus (HPV), particularly type 16, being the main etiological factor. The therapeutic HPV vaccines are urgently needed. The E7 protein of HPV is necessary for maintaining malignancy in tumor cells. Here, a genetically modified attenuated LM expressing HPV16 E7 protein was constructed. Intraperitoneal vaccination of LM4Δhly::E7 significantly reduced tumor size and even resulted in complete regression of established tumors in a murine model of cervical cancer. We provided evidence that recombinant LM strains could enter the tumor tissue and induce non-specific tumor cell death, probably via activation of reactive oxygen species and increased intracellular Ca2+ levels. LM4Δhly::E7 effectively triggered a strong antigen-specific cellular immunity in tumor-bearing mice, and elicited significant infiltration of T cells in the intratumoral milieu. In summary, these data showed LM4Δhly::E7 to be effective in a cervical cancer model and LM4Δhly::E7 induced an antitumor effect by antigen-specific cellular immune responses and direct killing of tumor cells, indicating a potential application against cervical cancer.
Collapse
Affiliation(s)
- Yan Yan Jia
- Jiangsu Key Laboratory of Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou UniversityYangzhou, China
| | - Wei Jun Tan
- Jiangsu Key Laboratory of Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou UniversityYangzhou, China
| | - Fei Fei Duan
- Jiangsu Key Laboratory of Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou UniversityYangzhou, China
| | - Zhi Ming Pan
- Jiangsu Key Laboratory of Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou UniversityYangzhou, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou UniversityYangzhou, China
| | - Yue Lan Yin
- Jiangsu Key Laboratory of Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou UniversityYangzhou, China
| | - Xin An Jiao
- Jiangsu Key Laboratory of Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou UniversityYangzhou, China
| |
Collapse
|
8
|
Kummer A, Nishanth G, Koschel J, Klawonn F, Schlüter D, Jänsch L. Listeriosis downregulates hepatic cytochrome P450 enzymes in sublethal murine infection. Proteomics Clin Appl 2016; 10:1025-1035. [PMID: 27273978 DOI: 10.1002/prca.201600030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/11/2016] [Accepted: 06/01/2016] [Indexed: 11/08/2022]
Abstract
PURPOSE Listeria monocytogenes (Lm) can cross the intestinal barrier in humans and then disseminates into different organs. Invasion of the liver occurs even in sublethal infections, however, knowledge of affected physiological processes is scarce. This study employed a sublethal murine infection model to investigate liver responses systematically by proteomics. EXPERIMENTAL DESIGN Liver samples from three stages of the sublethal infection covering the initial invasion, the peak of infection, and the clearance phase (1, 3, 9 days postinoculation) were analyzed in comparison to samples from noninfected mice. Apart from flow cytometry and RT-PCRs for immune status control, liver responses were analyzed by quantitative peptide sequencing (HPLC-Orbitrap Fusion) using 4-plex iTRAQ-labeling. RESULTS Accurate MS characterized about 3600 proteins and statistics revealed 15% of the hepatic proteome as regulated. Immunological data as well as protein regulation dynamics strongly indicate stage-specific hepatic responses in sublethal infections. Most notably, this study detected a comprehensive deregulation of drug metabolizing enzymes at all stages, including 25 components of the cytochrome P450 system. CONCLUSIONS AND CLINICAL RELEVANCE Sublethal Lm infection deregulates hepatic drug metabolizing pathways. This finding indicates the need to monitor drug administration along Lm infections, especially in all patients needing constant medication.
Collapse
Affiliation(s)
- Anne Kummer
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Gopala Nishanth
- Otto-von-Guericke University, Magdeburg, Germany.,Organ-specific Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Frank Klawonn
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Department of Computer Science, Ostfalia University of Applied Sciences, Wolfenbüttel, Germany
| | - Dirk Schlüter
- Otto-von-Guericke University, Magdeburg, Germany.,Organ-specific Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lothar Jänsch
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| |
Collapse
|