1
|
Vuotto C, Donelli G, Buckley A, Chilton C. Clostridioides difficile Biofilm. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:249-272. [PMID: 38175479 DOI: 10.1007/978-3-031-42108-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile infection (CDI), previously Clostridium difficile infection, is a symptomatic infection of the large intestine caused by the spore-forming anaerobic, gram-positive bacterium Clostridioides difficile. CDI is an important healthcare-associated disease worldwide, characterized by high levels of recurrence, morbidity, and mortality. CDI is observed at a higher rate in immunocompromised patients after antimicrobial therapy, with antibiotics disrupting the commensal microbiota and promoting C. difficile colonization of the gastrointestinal tract.A rise in clinical isolates resistant to multiple antibiotics and the reduced susceptibility to the most commonly used antibiotic molecules have made the treatment of CDI more complicated, allowing the persistence of C. difficile in the intestinal environment.Gut colonization and biofilm formation have been suggested to contribute to the pathogenesis and persistence of C. difficile. In fact, biofilm growth is considered as a serious threat because of the related antimicrobial tolerance that makes antibiotic therapy often ineffective. This is the reason why the involvement of C. difficile biofilm in the pathogenesis and recurrence of CDI is attracting more and more interest, and the mechanisms underlying biofilm formation of C. difficile as well as the role of biofilm in CDI are increasingly being studied by researchers in the field.Findings on C. difficile biofilm, possible implications in CDI pathogenesis and treatment, efficacy of currently available antibiotics in treating biofilm-forming C. difficile strains, and some antimicrobial alternatives under investigation will be discussed here.
Collapse
Affiliation(s)
- Claudia Vuotto
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | | | - Anthony Buckley
- Microbiome and Nutritional Sciences Group, School of Food Science & Nutrition, University of Leeds, Leeds, UK
| | - Caroline Chilton
- Healthcare Associated Infection Research Group, Section of Molecular Gastroenterology, Leeds Institute for Medical Research at St James, University of Leeds, Leeds, UK
| |
Collapse
|
2
|
Bassotti G, Marchegiani A, Marconi P, Fettucciari K. The cytotoxic synergy between Clostridioides difficile toxin B and proinflammatory cytokines: an unholy alliance favoring the onset of Clostridioides difficile infection and relapses. Microbiologyopen 2020; 9:e1061. [PMID: 32657021 PMCID: PMC7424247 DOI: 10.1002/mbo3.1061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/31/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
Clostridioides difficile infection (CDI) represents an important health problem worldwide, with significant morbidity and mortality. This infection has also high recurrence rates, whose pathophysiological grounds are still poorly understood. Based on our experiments in vitro with Clostridioides difficile toxin B and existing experimental and clinical evidence, we propose that primary CDI and relapses might be favored by a mechanism that involves the enhancement of the toxicity of toxin B by proinflammatory cytokines, tumor necrosis factor alpha, and interferon gamma on the enteric glial cells and their network in an environment characterized by a strong dysmicrobism.
Collapse
Affiliation(s)
- Gabrio Bassotti
- Gastroenterology & Hepatology SectionDepartment of MedicineUniversity of Perugia Medical SchoolPerugiaItaly
- Gastroenterology & Hepatology UnitSanta Maria della Misericordia HospitalPerugiaItaly
| | - Andrea Marchegiani
- School of Biosciences and Veterinary MedicineUniversity of CamerinoMacerataItaly
| | | | - Katia Fettucciari
- Department of Experimental MedicineUniversity of Perugia Medical SchoolPerugiaItaly
| |
Collapse
|
3
|
Jahanshahi S, Li Y. An Effective Method for Quantifying RNA Expression of IbsC-SibC, a Type I Toxin-Antitoxin System in Escherichia coli. Chembiochem 2020; 21:3120-3130. [PMID: 32516493 DOI: 10.1002/cbic.202000280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/04/2020] [Indexed: 01/28/2023]
Abstract
Toxin and antitoxin (TA) systems are small genetic modules consisting of a toxin protein and an RNA or protein antitoxin. It is difficult to study their functions in a large part due to the lack of effective methods to study toxin RNAs, which usually exist at exceptionally low levels. Herein, we describe a sensitive reverse transcription quantitative PCR (RT-qPCR) method that is able to quantitate such RNA species. The method was directed at detection of the toxin mRNA of the ibsC-sibC TA pair, and its high specificity was validated by sequencing. The approach was used to determine relative expression of the IbsC and SibC RNAs at different cell-growth phases; this revealed an expression pattern that cannot be explained by the prevailing notion of growth stasis by the toxin and rescue by the antitoxin. The usefulness of the method was further showcased by the determination of average cellular copy numbers of the IbsC-SibC RNAs in wild-type E. coli cells and RNA abundance in E. coli cells engineered with extra copies of the ibsC-sibC genes. With a robust method to quantitate cellular small RNAs at very low concentrations, we are now equipped to study the expression of TA systems under different conditions to gain useful insights about their functions.
Collapse
Affiliation(s)
- Shahrzad Jahanshahi
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4 K1, Canada
| | - Yingfu Li
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4 K1, Canada
| |
Collapse
|
4
|
Álvarez R, Ortega-Fuentes C, Queraltó C, Inostroza O, Díaz-Yáñez F, González R, Calderón IL, Fuentes JA, Paredes-Sabja D, Gil F. Evaluation of functionality of type II toxin-antitoxin systems of Clostridioides difficile R20291. Microbiol Res 2020; 239:126539. [PMID: 32622285 DOI: 10.1016/j.micres.2020.126539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 01/05/2023]
Abstract
Clostridioides difficile is a nosocomial, Gram-positive, strictly anaerobic, spore-forming pathogen capable of colonizing and proliferating in the human intestine. In bacteria, it has been shown that the Toxin-Antitoxin systems mediate the cellular response to external stress by initiating processes such as biofilm formation and programmed cell death. This work aims to evaluate the functionality of four type II TA modules of Clostridioides difficile R20291. We performed bioinformatic analysis to search for putative TA systems using the TADB platform. Then we performed a heterologous expression assay to evaluate the functionality of these systems. Our results showed that the MazEF and RelBE systems were functional, suggesting that their corresponding toxins possess an endoribonuclease activity. In conclusion, MazEF and RelBE systems of C. difficile R20291 are functional in a heterologous expression system.
Collapse
Affiliation(s)
- R Álvarez
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - C Ortega-Fuentes
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - C Queraltó
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - O Inostroza
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - F Díaz-Yáñez
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - R González
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - I L Calderón
- Laboratorio de RNAs bacterianos, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - J A Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - D Paredes-Sabja
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - F Gil
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile.
| |
Collapse
|
5
|
Tijerina-Rodríguez L, Villarreal-Treviño L, Baines SD, Morfín-Otero R, Camacho-Ortíz A, Flores-Treviño S, Maldonado-Garza H, Rodríguez-Noriega E, Garza-González E. High sporulation and overexpression of virulence factors in biofilms and reduced susceptibility to vancomycin and linezolid in recurrent Clostridium [Clostridioides] difficile infection isolates. PLoS One 2019; 14:e0220671. [PMID: 31365590 PMCID: PMC6668830 DOI: 10.1371/journal.pone.0220671] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/20/2019] [Indexed: 12/23/2022] Open
Abstract
Clostridium [Clostridioides] difficile infection (CDI) is one of the leading causes of diarrhea associated with medical care worldwide, and up to 60% of patients with CDI can develop a recurrent infection (R-CDI). A multi-species microbiota biofilm model of C. difficile was designed to evaluate the differences in the production of biofilms, sporulation, susceptibility to drugs, expression of sporulating (sigH, spo0A), quorum sensing (agrD1, and luxS), and adhesion-associated (slpA and cwp84) pathway genes between selected C. difficile isolates from R-CDI and non-recurrent patients (NR-CDI). We obtained 102 C. difficile isolates from 254 patients with confirmed CDI (66 from NR-CDI and 36 from R-CDI). Most of the isolates were biofilm producers, and most of the strains were ribotype 027 (81.374%, 83/102). Most C. difficile isolates were producers of biofilm (100/102), and most were strongly adherent. Sporulation was higher in the R-CDI than in the NR-CDI isolates (p = 0.015). The isolates from R-CDI patients more frequently demonstrated reduced susceptibility to vancomycin than isolates of NR-CDI patients (27.78% [10/36] and 9.09% [6/66], respectively, p = 0.013). The minimum inhibitory concentrations for vancomycin and linezolid against biofilms (BMIC) were up to 100 times and 20 times higher, respectively, than the corresponding planktonic MICs. Expression of sigH, spo0A, cwp84, and agrD1 was higher in R-CDI than in NR-CDI isolates. Most of the C. difficile isolates were producers of biofilms with no correlation with the ribotype. Sporulation was greater in R-CDI than in NR-CDI isolates in the biofilm model of C. difficile. The R-CDI isolates more frequently demonstrated reduced susceptibility to vancomycin and linezolid than the NR-CDI isolates in both planktonic cells and biofilm isolates. A higher expression of sporulating pathway (sigH, spo0A), quorum sensing (agrD1), and adhesion-associated (cwp84) genes was found in R-CDI than in NR-CDI isolates. All of these factors can have effect on the recurrence of the infection.
Collapse
Affiliation(s)
- Laura Tijerina-Rodríguez
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Licet Villarreal-Treviño
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Simon D. Baines
- Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Rayo Morfín-Otero
- Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Guadalajara, Mexico
| | - Adrián Camacho-Ortíz
- Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Samantha Flores-Treviño
- Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Héctor Maldonado-Garza
- Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Eduardo Rodríguez-Noriega
- Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Guadalajara, Mexico
| | - Elvira Garza-González
- Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey, Mexico
- * E-mail:
| |
Collapse
|
6
|
Maikova A, Peltier J, Boudry P, Hajnsdorf E, Kint N, Monot M, Poquet I, Martin-Verstraete I, Dupuy B, Soutourina O. Discovery of new type I toxin-antitoxin systems adjacent to CRISPR arrays in Clostridium difficile. Nucleic Acids Res 2019. [PMID: 29529286 PMCID: PMC5961336 DOI: 10.1093/nar/gky124] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Clostridium difficile, a major human enteropathogen, must cope with foreign DNA invaders and multiple stress factors inside the host. We have recently provided an experimental evidence of defensive function of the C. difficile CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) system important for its survival within phage-rich gut communities. Here, we describe the identification of type I toxin-antitoxin (TA) systems with the first functional antisense RNAs in this pathogen. Through the analysis of deep-sequencing data, we demonstrate the general co-localization with CRISPR arrays for the majority of sequenced C. difficile strains. We provide a detailed characterization of the overlapping convergent transcripts for three selected TA pairs. The toxic nature of small membrane proteins is demonstrated by the growth arrest induced by their overexpression. The co-expression of antisense RNA acting as an antitoxin prevented this growth defect. Co-regulation of CRISPR-Cas and type I TA genes by the general stress response Sigma B and biofilm-related factors further suggests a possible link between these systems with a role in recurrent C. difficile infections. Our results provide the first description of genomic links between CRISPR and type I TA systems within defense islands in line with recently emerged concept of functional coupling of immunity and cell dormancy systems in prokaryotes.
Collapse
Affiliation(s)
- Anna Maikova
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 75724 Paris Cedex 15, France.,Université Paris Diderot, Sorbonne Paris Cité, 75724 Paris Cedex 15, France.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow 143028, Russia.,Peter the Great St.Petersburg Polytechnic University, Saint Petersburg 195251, Russia
| | - Johann Peltier
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 75724 Paris Cedex 15, France.,Université Paris Diderot, Sorbonne Paris Cité, 75724 Paris Cedex 15, France
| | - Pierre Boudry
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 75724 Paris Cedex 15, France.,Université Paris Diderot, Sorbonne Paris Cité, 75724 Paris Cedex 15, France
| | - Eliane Hajnsdorf
- UMR8261 (CNRS-Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Nicolas Kint
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 75724 Paris Cedex 15, France.,Université Paris Diderot, Sorbonne Paris Cité, 75724 Paris Cedex 15, France
| | - Marc Monot
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 75724 Paris Cedex 15, France.,Université Paris Diderot, Sorbonne Paris Cité, 75724 Paris Cedex 15, France.,Département de Microbiologie et d'infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, J1E 4K8, Sherbrooke, QC, Canada
| | - Isabelle Poquet
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 75724 Paris Cedex 15, France.,INRA, UMR1319 Micalis (Microbiologie de l'Alimentation au service de la Santé), Domaine de Vilvert, 78352, Jouy-en-Josas Cedex, France
| | - Isabelle Martin-Verstraete
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 75724 Paris Cedex 15, France.,Université Paris Diderot, Sorbonne Paris Cité, 75724 Paris Cedex 15, France
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 75724 Paris Cedex 15, France.,Université Paris Diderot, Sorbonne Paris Cité, 75724 Paris Cedex 15, France
| | - Olga Soutourina
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 75724 Paris Cedex 15, France.,Université Paris Diderot, Sorbonne Paris Cité, 75724 Paris Cedex 15, France.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
7
|
Rainha K, Fernandes Ferreira R, Trindade CNR, Carneiro LG, Penna B, Endres BT, Begum K, Alam MJ, Garey KW, Domingues Regina Maria CP, Ferreira EO. Characterization of Clostridioides difficile ribotypes in domestic dogs in Rio de Janeiro, Brazil. Anaerobe 2019; 58:22-29. [PMID: 31220606 DOI: 10.1016/j.anaerobe.2019.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 04/08/2019] [Accepted: 06/15/2019] [Indexed: 02/08/2023]
Abstract
Clostridioides difficile is the major etiologic agent of nosocomial bacterial diarrhoea and pseudomembranous colitis. The pathogenesis of C. difficile infection (CDI)involves two cytotoxic enzymes (TcdA, TcdB) that cause colonic epithelial damage, fluid accumulation and enteritis. CDI has been demonstrated in a variety of animal species and some reports have recently raised the importance of wild animals as a reservoir of this pathogen and possible transmission to humans and domestic animals. The aim of this study was to characterize C. difficile isolates obtained from pet dogs in Rio de Janeiro, Brazil. A total of 50 faecal samples were obtained from healthy and diarrheic dogs. Five of fifty samples (10%) grew C. difficile. Of those, three belonged to the PCR ribotype 106 (ST 42) and were toxigenic (A+B+). The other two strains belonged to the PCR ribotype 010 (ST 15) and were not toxin producers (A-B-). None of the isolates tested positive for the binary toxin genes. Considering the antimicrobial resistance patterns of all isolates using EUCAST breakpoints, all strains were sensitive to metronidazole and vancomycin. However, two strains (ribotype 106 and ribotype 010), were resistant to clindamycin (≤256 μg/mL). All strains were strong biofilm producers. Our study provides evidence that dogs can act as reservoirs for C. difficile epidemic ribotypes.
Collapse
Affiliation(s)
- K Rainha
- Universidade Federal do Rio de Janeiro, IMPG, Depto. de Microbiologia Médica, Rio de Janeiro, Brazil
| | - R Fernandes Ferreira
- Clínica Veterinária VetCare, Flamengo, Rio de Janeiro, Brazil; Universidade Severino Sombra, Pro Reitoria de Pesquisa e Pós Graduação, Vassouras, Rio de Janeiro, Brazil
| | - C N R Trindade
- Universidade Federal do Rio de Janeiro, IMPG, Depto. de Microbiologia Médica, Rio de Janeiro, Brazil
| | - L G Carneiro
- Universidade Federal do Rio de Janeiro, IMPG, Depto. de Microbiologia Médica, Rio de Janeiro, Brazil
| | - B Penna
- Universidade Federal Fluminense, Depto. de Microbiologia Veterinária, Niterói, Brazil
| | - B T Endres
- University of Houston College of Pharmacy, 4849 Calhoun Road, Houston, TX, 77204, USA
| | - K Begum
- University of Houston College of Pharmacy, 4849 Calhoun Road, Houston, TX, 77204, USA
| | - M J Alam
- University of Houston College of Pharmacy, 4849 Calhoun Road, Houston, TX, 77204, USA
| | - K W Garey
- University of Houston College of Pharmacy, 4849 Calhoun Road, Houston, TX, 77204, USA
| | | | - E O Ferreira
- Universidade Federal do Rio de Janeiro, IMPG, Depto. de Microbiologia Médica, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Soutourina O. Type I Toxin-Antitoxin Systems in Clostridia. Toxins (Basel) 2019; 11:toxins11050253. [PMID: 31064056 PMCID: PMC6563280 DOI: 10.3390/toxins11050253] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/20/2022] Open
Abstract
Type I toxin-antitoxin (TA) modules are abundant in both bacterial plasmids and chromosomes and usually encode a small hydrophobic toxic protein and an antisense RNA acting as an antitoxin. The RNA antitoxin neutralizes toxin mRNA by inhibiting its translation and/or promoting its degradation. This review summarizes our current knowledge of the type I TA modules identified in Clostridia species focusing on the recent findings in the human pathogen Clostridium difficile. More than ten functional type I TA modules have been identified in the genome of this emerging enteropathogen that could potentially contribute to its fitness and success inside the host. Despite the absence of sequence homology, the comparison of these newly identified type I TA modules with previously studied systems in other Gram-positive bacteria, i.e., Bacillus subtilis and Staphylococcus aureus, revealed some important common traits. These include the conservation of characteristic sequence features for small hydrophobic toxic proteins, the localization of several type I TA within prophage or prophage-like regions and strong connections with stress response. Potential functions in the stabilization of genome regions, adaptations to stress conditions and interactions with CRISPR-Cas defence system, as well as promising applications of TA for genome-editing and antimicrobial developments are discussed.
Collapse
Affiliation(s)
- Olga Soutourina
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette CEDEX, France.
| |
Collapse
|
9
|
Mechanisms of Bacterial Tolerance and Persistence in the Gastrointestinal and Respiratory Environments. Clin Microbiol Rev 2018; 31:31/4/e00023-18. [PMID: 30068737 DOI: 10.1128/cmr.00023-18] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pathogens that infect the gastrointestinal and respiratory tracts are subjected to intense pressure due to the environmental conditions of the surroundings. This pressure has led to the development of mechanisms of bacterial tolerance or persistence which enable microorganisms to survive in these locations. In this review, we analyze the general stress response (RpoS mediated), reactive oxygen species (ROS) tolerance, energy metabolism, drug efflux pumps, SOS response, quorum sensing (QS) bacterial communication, (p)ppGpp signaling, and toxin-antitoxin (TA) systems of pathogens, such as Escherichia coli, Salmonella spp., Vibrio spp., Helicobacter spp., Campylobacter jejuni, Enterococcus spp., Shigella spp., Yersinia spp., and Clostridium difficile, all of which inhabit the gastrointestinal tract. The following respiratory tract pathogens are also considered: Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, Burkholderia cenocepacia, and Mycobacterium tuberculosis Knowledge of the molecular mechanisms regulating the bacterial tolerance and persistence phenotypes is essential in the fight against multiresistant pathogens, as it will enable the identification of new targets for developing innovative anti-infective treatments.
Collapse
|
10
|
|
11
|
Gil F, Paredes-Sabja D. Acyldepsipeptide antibiotics as a potential therapeutic agent against Clostridium difficile recurrent infections. Future Microbiol 2016; 11:1179-89. [DOI: 10.2217/fmb-2016-0064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alternative antimicrobial therapies based on acyldepsipeptides may hold promising results, based on the fact that they have shown to efficiently eradicate persister cells, stationary cells and cell in biofilm structures of several pathogenic bacteria from the infected host. Clostridium difficile infection is considered the result of extensive hospital use of expanded-spectrum antibiotics, which cause dysbiosis of the intestinal microbiota, enhancing susceptibility to infection and persistence. Considering the urgent need for the development of novel and efficient antimicrobial strategies against C. difficile, we review the potential application to treat C. difficile infections of acyldepsipeptides family of antibiotics, its mechanism of action and current developmental stages.
Collapse
Affiliation(s)
- Fernando Gil
- Microbiota–Host Interactions & Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Daniel Paredes-Sabja
- Microbiota–Host Interactions & Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- Center for Bioinformatic & Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
12
|
Emerging Roles of Toxin-Antitoxin Modules in Bacterial Pathogenesis. Molecules 2016; 21:molecules21060790. [PMID: 27322231 PMCID: PMC6273597 DOI: 10.3390/molecules21060790] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/06/2016] [Accepted: 06/13/2016] [Indexed: 11/17/2022] Open
Abstract
Toxin-antitoxin (TA) cassettes are encoded widely by bacteria. The modules typically comprise a protein toxin and protein or RNA antitoxin that sequesters the toxin factor. Toxin activation in response to environmental cues or other stresses promotes a dampening of metabolism, most notably protein translation, which permits survival until conditions improve. Emerging evidence also implicates TAs in bacterial pathogenicity. Bacterial persistence involves entry into a transient semi-dormant state in which cells survive unfavorable conditions including killing by antibiotics, which is a significant clinical problem. TA complexes play a fundamental role in inducing persistence by downregulating cellular metabolism. Bacterial biofilms are important in numerous chronic inflammatory and infectious diseases and cause serious therapeutic problems due to their multidrug tolerance and resistance to host immune system actions. Multiple TAs influence biofilm formation through a network of interactions with other factors that mediate biofilm production and maintenance. Moreover, in view of their emerging contributions to bacterial virulence, TAs are potential targets for novel prophylactic and therapeutic approaches that are required urgently in an era of expanding antibiotic resistance. This review summarizes the emerging evidence that implicates TAs in the virulence profiles of a diverse range of key bacterial pathogens that trigger serious human disease.
Collapse
|
13
|
Coussens NP, Daines DA. Wake me when it's over - Bacterial toxin-antitoxin proteins and induced dormancy. Exp Biol Med (Maywood) 2016; 241:1332-42. [PMID: 27216598 DOI: 10.1177/1535370216651938] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Toxin-antitoxin systems are encoded by bacteria and archaea to enable an immediate response to environmental stresses, including antibiotics and the host immune response. During normal conditions, the antitoxin components prevent toxins from interfering with metabolism and arresting growth; however, toxin activation enables microbes to remain dormant through unfavorable conditions that might continue over millions of years. Intense investigations have revealed a multitude of mechanisms for both regulation and activation of toxin-antitoxin systems, which are abundant in pathogenic microorganisms. This minireview provides an overview of the current knowledge regarding type II toxin-antitoxin systems along with their clinical and environmental implications.
Collapse
Affiliation(s)
- Nathan P Coussens
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Dayle A Daines
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| |
Collapse
|