1
|
Mao W, Rong Y, Zhang H, Yuan F, Wang Y, Wang M, Wang L, Wang PG, Chen M, Wang S, Kong Y. Characterization and application in recombinant N-GlcNAc-protein production of a novel endo-β-N-acetylglucosaminidase from Listeria booriae. Bioorg Chem 2025; 157:108290. [PMID: 39983405 DOI: 10.1016/j.bioorg.2025.108290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/07/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
Endo-β-N-acetylglucosaminidases (ENGases) are essential enzymes for hydrolyzing N-glycans, with applications in protein N-glycosylation analysis and glycoprotein synthesis. In this study, a novel GH18 family ENGase, Endo-LB, was identified from Listeria booriae FSL A5-0281. Composed of 593 amino acids (65.78 kDa), Endo-LB features with two domains: an Endo S-like catalytic domain and a mucin-binding protein (MucBP) domain. Recombinant Endo-LB, expressed in Escherichia coli BL21 (DE3) pLysS, exhibited a specific activity of 198.25 U/mg and hydrolyzed high mannose-type N-glycans at a temperature from 4 °C to 60 °C with optimal activity at 37 °C and pH 6.0 (range 3.0 to 10.0), making it versatile for various environmental conditions. The MucBP domain does not affect soluble Endo-LB activity but influences interaction with mucin on cell surface, suggesting potential application in targeting specific glycoproteins in complex biological environments. To address the heterogeneity of N-glycans in Pichia pastoris (Komagataella phaffii) expression, Endo-LB was further expressed in the Golgi of P. pastoris, efficiently producing glycoproteins, such as Erythropoietin (EPO) (37 mg/L) and Darbepoetin α (53 mg/L) with nearly complete N-glycans truncation, which can be further extended to generate diverse N-glycan structures. These findings highlight the versatility and potential utility of Endo-LB in glycoprotein engineering and biotechnological applications.
Collapse
Affiliation(s)
- Weian Mao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yongheng Rong
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Hongmei Zhang
- Department of Endocrinology, Zibo Central Hospital, Zibo 255020, China
| | - Fang Yuan
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yankang Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Mei Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Linhan Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Peng George Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Min Chen
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Shengjun Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| | - Yun Kong
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
2
|
Hsieh YC, Guan HH, Lin CC, Huang TY, Chuankhayan P, Chen NC, Wang NH, Hu PL, Tsai YC, Huang YC, Yoshimura M, Lin PJ, Hsieh YH, Chen CJ. Structure-Based High-Efficiency Homogeneous Antibody Platform by Endoglycosidase Sz Provides Insights into Its Transglycosylation Mechanism. JACS AU 2024; 4:2130-2150. [PMID: 38938812 PMCID: PMC11200250 DOI: 10.1021/jacsau.4c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 06/29/2024]
Abstract
Monoclonal antibodies (mAbs) have gradually dominated the drug markets for various diseases. Improvement of the therapeutic activities of mAbs has become a critical issue in the pharmaceutical industry. A novel endo-β-N-acetylglucosaminidase, EndoSz, from Streptococcus equisubsp. zooepidemicus Sz105 is discovered and applied to enhance the activities of mAbs. Our studies demonstrate that the mutant EndoSz-D234M possesses an excellent transglycosylation activity to generate diverse glycoconjugates on mAbs. We prove that EndoSz-D234M can be applied to various marketed therapeutic antibodies and those in development for antibody remodeling. The remodeled homogeneous antibodies (mAb-G2S2) produced by EndoSz-D234M increase the relative ADCC activities by 3-26-fold. We further report the high-resolution crystal structures of EndoSz-D234M in the apo-form at 2.15 Å and the complex form with a bound G2S2-oxazoline intermediate at 2.25 Å. A novel pH-jump method was utilized to obtain the complex structure with a high resolution. The detailed interactions of EndoSz-D234M and the carried G2S2-oxazoline are hence delineated. The oxazoline sits in a hole, named the oxa-hole, which stabilizes the G2S2-oxazoline in transit and catalyzes the further transglycosylation reaction while targeting Asn-GlcNAc (+1) of Fc. In the oxa-hole, the H-bonding network involved with oxazoline dominates the transglycosylation activity. A mobile loop2 (a.a. 152-159) of EndoSz-D234M reshapes the binding grooves for the accommodation of G2S2-oxazoline upon binding, at which Trp154 forms a hydrogen bond with Man (-2). The long loop4 (a.a. 236-248) followed by helix3 is capable of dominating the substrate selectivity of EndoSz-D234M. In addition, the stepwise transglycosylation behavior of EndoSz-D234M is elucidated. Based on the high-resolution structures of the apo-form and the bound form with G2S2-oxazoline as well as a systematic mutagenesis study of the relative transglycosylation activity, the transglycosylation mechanism of EndoSz-D234M is revealed.
Collapse
Affiliation(s)
- Yin-Cheng Hsieh
- OBI
Pharma, Inc., No. 508, Sec. 7, ZhongXiao E. Rd, Nangang Dist., Taipei City 115, Taiwan
| | - Hong-Hsiang Guan
- Life
Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101, Hsin-Ann Road, Hsinchu 300092, Taiwan
| | - Chien-Chih Lin
- Life
Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101, Hsin-Ann Road, Hsinchu 300092, Taiwan
| | - Teng-Yi Huang
- OBI
Pharma, Inc., No. 508, Sec. 7, ZhongXiao E. Rd, Nangang Dist., Taipei City 115, Taiwan
| | - Phimonphan Chuankhayan
- Life
Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101, Hsin-Ann Road, Hsinchu 300092, Taiwan
| | - Nai-Chi Chen
- Life
Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101, Hsin-Ann Road, Hsinchu 300092, Taiwan
| | - Nan-Hsuan Wang
- OBI
Pharma, Inc., No. 508, Sec. 7, ZhongXiao E. Rd, Nangang Dist., Taipei City 115, Taiwan
| | - Pu-Ling Hu
- OBI
Pharma, Inc., No. 508, Sec. 7, ZhongXiao E. Rd, Nangang Dist., Taipei City 115, Taiwan
| | - Yi-Chien Tsai
- OBI
Pharma, Inc., No. 508, Sec. 7, ZhongXiao E. Rd, Nangang Dist., Taipei City 115, Taiwan
| | - Yen-Chieh Huang
- Life
Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101, Hsin-Ann Road, Hsinchu 300092, Taiwan
| | - Masato Yoshimura
- Life
Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101, Hsin-Ann Road, Hsinchu 300092, Taiwan
| | - Pei-Ju Lin
- Life
Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101, Hsin-Ann Road, Hsinchu 300092, Taiwan
| | - Yih-Huang Hsieh
- OBI
Pharma, Inc., No. 508, Sec. 7, ZhongXiao E. Rd, Nangang Dist., Taipei City 115, Taiwan
| | - Chun-Jung Chen
- Life
Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101, Hsin-Ann Road, Hsinchu 300092, Taiwan
- Institute
of Biotechnology and industry Science, and University Center for Bioscience
and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
- Department
of Physics, National Tsing Hua University, Hsinchu 300044, Taiwan
- Department
of Biological Science and Technology, National
Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
3
|
Toledo AG, Bratanis E, Velásquez E, Chowdhury S, Olofsson B, Sorrentino JT, Karlsson C, Lewis NE, Esko JD, Collin M, Shannon O, Malmström J. Pathogen-driven degradation of endogenous and therapeutic antibodies during streptococcal infections. Nat Commun 2023; 14:6693. [PMID: 37872209 PMCID: PMC10593946 DOI: 10.1038/s41467-023-42572-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
Group A streptococcus (GAS) is a major bacterial pathogen responsible for both local and systemic infections in humans. The molecular mechanisms that contribute to disease heterogeneity remain poorly understood. Here we show that the transition from a local to a systemic GAS infection is paralleled by pathogen-driven alterations in IgG homeostasis. Using animal models and a combination of sensitive proteomics and glycoproteomics readouts, we documented the progressive accumulation of IgG cleavage products in plasma, due to extensive enzymatic degradation triggered by GAS infection in vivo. The level of IgG degradation was modulated by the route of pathogen inoculation, and mechanistically linked to the combined activities of the bacterial protease IdeS and the endoglycosidase EndoS, upregulated during infection. Importantly, we show that these virulence factors can alter the structure and function of exogenous therapeutic IgG in vivo. These results shed light on the role of bacterial virulence factors in shaping GAS pathogenesis, and potentially blunting the efficacy of antimicrobial therapies.
Collapse
Affiliation(s)
- Alejandro Gomez Toledo
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Eleni Bratanis
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Erika Velásquez
- IPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Sounak Chowdhury
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Berit Olofsson
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - James T Sorrentino
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Christofer Karlsson
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Nathan E Lewis
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mattias Collin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Oonagh Shannon
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.
| |
Collapse
|
4
|
Crouch LI. N-glycan breakdown by bacterial CAZymes. Essays Biochem 2023; 67:373-385. [PMID: 37067180 PMCID: PMC10154615 DOI: 10.1042/ebc20220256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 04/18/2023]
Abstract
The modification of proteins by N-glycans is ubiquitous to most organisms and they have multiple biological functions, including protecting the adjoining protein from degradation and facilitating communication or adhesion between cells, for example. Microbes have evolved CAZymes to deconstruct different types of N-glycans and some of these have been characterised from microbes originating from different niches, both commensals and pathogens. The specificity of these CAZymes provides clues as to how different microbes breakdown these substrates and possibly cross-feed them. Discovery of CAZymes highly specific for N-glycans also provides new tools and options for modifying glycoproteins.
Collapse
Affiliation(s)
- Lucy I Crouch
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| |
Collapse
|
5
|
Bai Q, Ma J, Zhang Z, Zhong X, Pan Z, Zhu Y, Zhang Y, Wu Z, Liu G, Yao H. YSIRK-G/S-directed translocation is required for Streptococcus suis to deliver diverse cell wall anchoring effectors contributing to bacterial pathogenicity. Virulence 2021; 11:1539-1556. [PMID: 33138686 PMCID: PMC7644249 DOI: 10.1080/21505594.2020.1838740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Streptococcus suis serotype 2 (SS2) is a significant zoonotic pathogen that is responsible for various swine diseases, even causing cytokine storms of Streptococcal toxic shock-like syndromes amongst human. Cell wall anchoring proteins with a C-terminal LPxTG are considered to play vital roles during SS2 infection; however, their exporting mechanism across cytoplasmic membranes has remained vague. This study found that YSIRK-G/S was involved in the exportation of LPxTG-anchoring virulence factors MRP and SspA in virulent SS2 strain ZY05719. The whole-genome analysis indicated that diverse LPxTG proteins fused with an N-terminal YSIRK-G/S motif are encoded in strain ZY05719. Two novel LPxTG proteins SspB and YzpA were verified to be exported via a putative transport system that was dependent on the YSIRK-G/S directed translocation, and portrayed vital functions during the infection of SS2 strain ZY05719. Instead of exhibiting an inactivation of C5a peptidase in SspB, another LPxTG protein with an N-terminal YSIRK-G/S motif from Streptococcus agalactiae was depicted to cleave the C5a component of the host complement. The consequent domain-architecture retrieval determined more than 10,000 SspB/YzpA like proteins that are extensively distributed in the Gram-positive bacteria, and most of them harbor diverse glycosyl hydrolase or peptidase domains within their middle regions, thus presenting their capability to interact with host cells. The said findings provide compelling evidence that LPxTG proteins with an N-terminal YSIRK-G/S motif are polymorphic effectors secreted by Gram-positive bacteria, which can be further proposed to define as cell wall anchoring effectors in a new subset.
Collapse
Affiliation(s)
- Qiankun Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Ze Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Xiaojun Zhong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Zihao Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Yinchu Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Yue Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Guangjin Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| |
Collapse
|
6
|
Sjögren J, Lood R, Nägeli A. On enzymatic remodeling of IgG glycosylation; unique tools with broad applications. Glycobiology 2020; 30:254-267. [PMID: 31616919 PMCID: PMC7109354 DOI: 10.1093/glycob/cwz085] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/05/2019] [Accepted: 09/30/2019] [Indexed: 01/14/2023] Open
Abstract
The importance of IgG glycosylation has been known for many years not only by scientists in glycobiology but also by human pathogens that have evolved specific enzymes to modify these glycans with fundamental impact on IgG function. The rise of IgG as a major therapeutic scaffold for many cancer and immunological indications combined with the availability of unique enzymes acting specifically on IgG Fc-glycans have spurred a range of applications to study this important post-translational modification on IgG. This review article introduces why the IgG glycans are of distinguished interest, gives a background on the unique enzymatic tools available to study the IgG glycans and finally presents an overview of applications utilizing these enzymes for various modifications of the IgG glycans. The applications covered include site-specific glycan transglycosylation and conjugation, analytical workflows for monoclonal antibodies and serum diagnostics. Additionally, the review looks ahead and discusses the importance of O-glycosylation for IgG3, Fc-fusion proteins and other new formats of biopharmaceuticals.
Collapse
Affiliation(s)
| | - Rolf Lood
- Genovis AB, Scheelevägen 2, 223 63 Lund, Sweden
| | | |
Collapse
|
7
|
Ma J, Zhang Z, Pan Z, Bai Q, Zhong X, Zhu Y, Zhang Y, Wu Z, Liu G, Yao H. Streptococcus suis Uptakes Carbohydrate Source from Host Glycoproteins by N-glycans Degradation System for Optimal Survival and Full Virulence during Infection. Pathogens 2020; 9:E387. [PMID: 32443590 PMCID: PMC7281376 DOI: 10.3390/pathogens9050387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Infection with the epidemic virulent strain of Streptococcus suis serotype 2 (SS2) can cause septicemia in swine and humans, leading to pneumonia, meningitis and even cytokine storm of Streptococcal toxic shock-like syndrome. Despite some progress concerning the contribution of bacterial adhesion, biofilm, toxicity and stress response to the SS2 systemic infection, the precise mechanism underlying bacterial survival and growth within the host bloodstream remains elusive. Here, we reported the SS2 virulent strains with a more than 20 kb endoSS-related insertion region that showed significantly higher proliferative ability in swine serum than low-virulent strains. Further study identified a complete N-glycans degradation system encoded within this insertion region, and found that both GH92 and EndoSS contribute to bacterial virulence, but that only DndoSS was required for optimal growth of SS2 in host serum. The supplement of hydrolyzed high-mannose-containing glycoprotein by GH92 and EndoSS could completely restore the growth deficiency of endoSS deletion mutant in swine serum. EndoSS only hydrolyzed a part of the model glycoprotein RNase B with high-mannose N-linked glycoforms into a low molecular weight form, and the solo activity of GH92 could not show any changes comparing with the blank control in SDS-PAGE gel. However, complete hydrolyzation was observed under the co-incubation of EndoSS and GH92, suggesting GH92 may degrade the high-mannose arms of N-glycans to generate a substrate for EndoSS. In summary, these findings provide compelling evidences that EndoSS-related N-glycans degradation system may enable SS2 to adapt to host serum-specific availability of carbon sources from glycoforms, and be required for optimal colonization and full virulence during systemic infection.
Collapse
Affiliation(s)
- Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Ze Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Zihao Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Qiankun Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Xiaojun Zhong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Yinchu Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Yue Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Guangjin Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| |
Collapse
|
8
|
Naegeli A, Bratanis E, Karlsson C, Shannon O, Kalluru R, Linder A, Malmström J, Collin M. Streptococcus pyogenes evades adaptive immunity through specific IgG glycan hydrolysis. J Exp Med 2019; 216:1615-1629. [PMID: 31092533 PMCID: PMC6605743 DOI: 10.1084/jem.20190293] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/19/2022] Open
Abstract
EndoS from Streptococcus pyogenes hydrolyzes the functionally important glycan on the Fc portion of IgG during infections in humans. In mice with IgG mediated immunity against the M1 protein on the bacteria, EndoS is a virulence factor. Streptococcus pyogenes (Group A streptococcus; GAS) is a human pathogen causing diseases from uncomplicated tonsillitis to life-threatening invasive infections. GAS secretes EndoS, an endoglycosidase that specifically cleaves the conserved N-glycan on IgG antibodies. In vitro, removal of this glycan impairs IgG effector functions, but its relevance to GAS infection in vivo is unclear. Using targeted mass spectrometry, we characterized the effects of EndoS on host IgG glycosylation during the course of infections in humans. Substantial IgG glycan hydrolysis occurred at the site of infection and systemically in the severe cases. We demonstrated decreased resistance to phagocytic killing of GAS lacking EndoS in vitro and decreased virulence in a mouse model of invasive infection. This is the first described example of specific bacterial IgG glycan hydrolysis during infection and thereby verifies the hypothesis that EndoS modifies antibodies in vivo. This mechanisms of immune evasion could have implications for treatment of severe GAS infections and for future efforts at vaccine development.
Collapse
Affiliation(s)
- Andreas Naegeli
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Eleni Bratanis
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Christofer Karlsson
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Oonagh Shannon
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Raja Kalluru
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Adam Linder
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Johan Malmström
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Mattias Collin
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Turner CE, Bubba L, Efstratiou A. Pathogenicity Factors in Group C and G Streptococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0020-2018. [PMID: 31111818 PMCID: PMC11026075 DOI: 10.1128/microbiolspec.gpp3-0020-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Indexed: 11/20/2022] Open
Abstract
Initially recognized zoonoses, streptococci belonging to Lancefield group C (GCS) and G (GGS) were subsequently recognised as human pathogens causing a diverse range of symptoms, from asymptomatic carriage to life threatening diseases. Their taxonomy has changed during the last decade. Asymptomatic carriage is <4% amongst the human population and invasive infections are often in association with chronic diseases such as diabetes, cardiovascular diseases or chronic skin infections. Other clinical manifestations include acute pharyngitis, pneumonia, endocarditis, bacteraemia and toxic-shock syndrome. Post streptococcal sequalae such as rheumatic fever and acute glomerulonephritis have also been described but mainly in developed countries and amongst specific populations. Putative virulence determinants for these organisms include adhesins, toxins, and other factors that are essential for dissemination in human tissues and for interference with the host immune responses. High nucleotide similarities among virulence genes and their association with mobile genetic elements supports the hypothesis of extensive horizontal gene transfer events between the various pyogenic streptococcal species belonging to Lancefield groups A, C and G. A better understanding of the mechanisms of pathogenesis should be apparent by whole-genome sequencing, and this would result in more effective clinical strategies for the pyogenic group in general.
Collapse
Affiliation(s)
- Claire E Turner
- Department of Molecular Biology & Biotechnology, The Florey Institute, University of Sheffield, Sheffield, UK
| | - Laura Bubba
- Reference Microbiology Division, National Infection Service, Public Health England, London, United Kingdom
- European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Androulla Efstratiou
- Reference Microbiology Division, National Infection Service, Public Health England, London, United Kingdom
| |
Collapse
|
10
|
Nandakumar KS, Collin M, Happonen KE, Lundström SL, Croxford AM, Xu B, Zubarev RA, Rowley MJ, Blom AM, Kjellman C, Holmdahl R. Streptococcal Endo-β- N-Acetylglucosaminidase Suppresses Antibody-Mediated Inflammation In Vivo. Front Immunol 2018; 9:1623. [PMID: 30061892 PMCID: PMC6054937 DOI: 10.3389/fimmu.2018.01623] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 07/02/2018] [Indexed: 12/19/2022] Open
Abstract
Endo-β-N-acetylglucosaminidase (EndoS) is a family 18 glycosyl hydrolase secreted by Streptococcus pyogenes. Recombinant EndoS hydrolyzes the β-1,4-di-N-acetylchitobiose core of the N-linked complex type glycan on the asparagine 297 of the γ-chains of IgG. Here, we report that EndoS and IgG hydrolyzed by EndoS induced suppression of local immune complex (IC)-mediated arthritis. A small amount (1 µg given i.v. to a mouse) of EndoS was sufficient to inhibit IgG-mediated arthritis in mice. The presence of EndoS disturbed larger IC lattice formation both in vitro and in vivo, as visualized with anti-C3b staining. Neither complement binding in vitro nor antigen-antibody binding per se were affected. Thus, EndoS could potentially be used for treating patients with IC-mediated pathology.
Collapse
Affiliation(s)
- Kutty Selva Nandakumar
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Mattias Collin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kaisa E Happonen
- Department of Translational Medicine, Lund University, Lund, Sweden.,Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Susanna L Lundström
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Allyson M Croxford
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Bingze Xu
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Roman A Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Merrill J Rowley
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Anna M Blom
- Department of Translational Medicine, Lund University, Lund, Sweden
| | | | - Rikard Holmdahl
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
11
|
Characterization of novel endo-β-N-acetylglucosaminidases from Sphingobacterium species, Beauveria bassiana and Cordyceps militaris that specifically hydrolyze fucose-containing oligosaccharides and human IgG. Sci Rep 2018; 8:246. [PMID: 29321565 PMCID: PMC5762919 DOI: 10.1038/s41598-017-17467-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
Abstract
Endo-β-N-acetylglucosaminidase (ENGase) catalyzes hydrolysis of N-linked oligosaccharides. Although many ENGases have been characterized from various organisms, so far no fucose-containing oligosaccharides-specific ENGase has been identified in any organism. Here, we screened soil samples, using dansyl chloride (Dns)-labeled sialylglycan (Dns-SG) as a substrate, and discovered a strain that exhibits ENGase activity in the culture supernatant; this strain, named here as strain HMA12, was identified as a Sphingobacterium species by 16S ribosomal RNA gene analysis. By draft genome sequencing, five candidate ENGase encoding genes were identified in the genome of this strain. Among them, a recombinant protein purified from Escherichia coli expressing the candidate gene ORF1188 exhibited fucose-containing oligosaccharides-specific ENGase activity. The ENGase exhibited optimum activities at very acidic pHs (between pH 2.3–2.5). A BLAST search using the sequence of ORF1188 identified two fungal homologs, one in Beauveria bassiana and the other in Cordyceps militaris. Recombinant ORF1188, Beauveria and Cordyceps ENGases released the fucose-containing oligosaccharides residues from rituximab (immunoglobulin G) but not the high-mannose-containing oligosaccharides residues from RNase B, a result that not only confirmed the substrate specificity of these novel ENGases but also suggested that natural glycoproteins could be their substrates.
Collapse
|
12
|
Adlam F. Welcome to volume 12 of the journal Future Microbiology. Future Microbiol 2017; 12:1-3. [DOI: 10.2217/fmb-2016-0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Collin M, Björck L. Toward Clinical use of the IgG Specific Enzymes IdeS and EndoS against Antibody-Mediated Diseases. Methods Mol Biol 2017; 1535:339-351. [PMID: 27914091 DOI: 10.1007/978-1-4939-6673-8_23] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The endoglycosidase EndoS and the protease IdeS from the human pathogen Streptococcus pyogenes are immunomodulating enzymes hydrolyzing human IgG. IdeS cleaves IgG in the lower hinge region, while EndoS hydrolyzes the conserved N-linked glycan in the Fc region. Both enzymes are remarkably specific for human IgG that after hydrolysis loses most of its effector functions, such as binding to leukocytes and complement activation, all contributing to bacterial evasion of adaptive immunity. However, taken out of their infectious context, we and others have shown that IdeS and EndoS can alleviate autoimmune disease in a number of animal models of antibody-mediated disorders. In this chapter, we will briefly describe the discovery and characterization of these unique enzymes, present the findings from a number of animal models of autoimmunity where the enzymes have been tested, and outline the ongoing clinical testing of IdeS. Furthermore, we will discuss the rationale for further development of IdeS and EndoS into novel pharmaceuticals against diseases where IgG antibodies contribute to the pathology, including, but not restricted to, chronic and acute autoimmunity, transplant rejection, and antidrug antibody reactions.
Collapse
Affiliation(s)
- Mattias Collin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Biomedical Center B14, SE-221 84, Lund, Sweden.
| | - Lars Björck
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Biomedical Center B14, SE-221 84, Lund, Sweden
| |
Collapse
|
14
|
Shadnezhad A, Naegeli A, Collin M. CP40 from Corynebacterium pseudotuberculosis is an endo-β-N-acetylglucosaminidase. BMC Microbiol 2016; 16:261. [PMID: 27821068 PMCID: PMC5100271 DOI: 10.1186/s12866-016-0884-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/29/2016] [Indexed: 12/21/2022] Open
Abstract
Background C. pseudotuberculosis is an important animal pathogen that causes substantial economical loss in sheep and goat farming. Zoonotic infections in humans are rare, but when they occur they are often severe and difficult to treat. One of the most studied proteins from this bacterium, the secreted protein CP40 is being developed as a promising vaccine candidate and has been characterized as a serine protease. In this study we have investigated if CP40 is an endoglycosidase rather than a protease. Results CP40 does not show any protease activity and contains an EndoS-like family 18 of glycoside hydrolase (chitinase) motif. It hydrolyzes biantennary glycans on both human and ovine IgGs. CP40 is not a general chitinase and cannot hydrolyze bisecting GlcNAc. Conclusion Taken together we present solid evidence for re-annotating CP40 as an EndoS-like endoglycosidase. Redefining the activity of this enzyme will facilitate subsequent studies that could give further insight into immune evasion mechanisms underlying corynebacterial infections in animals and humans.
Collapse
Affiliation(s)
- Azadeh Shadnezhad
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Biomedical Center B14, SE-22184, Lund, Sweden.
| | - Andreas Naegeli
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Biomedical Center B14, SE-22184, Lund, Sweden
| | - Mattias Collin
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Biomedical Center B14, SE-22184, Lund, Sweden
| |
Collapse
|