1
|
Gokulanathan N, Gokulanathan P, Bharathi N, Subburam P. Mixed Glioneural Tumors Mimicking Gliomas: Two Cases From a Tertiary Care Institute in South India and a Literature Review. Cureus 2025; 17:e78079. [PMID: 40013208 PMCID: PMC11864565 DOI: 10.7759/cureus.78079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 02/28/2025] Open
Abstract
Glioneuronal tumours are rare neural neoplasms that show differentiation and are usually low-grade. Unlike gliomas, they do not require aggressive management, and diagnosing and differentiating between these two entities is crucial to determining the treatment paradigm of this disease. Surgery is the treatment of choice for glioneuronal tumours, and the role of adjuvant treatment still needs to be fleshed out. These two cases, involving a six-year-old female child and a 35-year-old male patient, highlight the need to be cautious while differentiating these entities from their equivalents with poorer prognoses. They both underwent surgery followed by adjuvant radiation, with subsequent neuroimaging at regular intervals. Both patients were devoid of neurological complaints at the time of follow-up. These cases and literature review delve into the minutiae of clinical manifestations, histopathological characteristics, various modalities of treatment, and treatment outcomes of glioneuromas.
Collapse
Affiliation(s)
| | - Prashanth Gokulanathan
- Anesthesiology and Critical Care, Melmaruvathur Adhiparasakthi Institute of Medical Sciences, Melmaruvathur, IND
| | | | - P Subburam
- Neurological Surgery, Mahatma Brain and Spine Centre, Madurai, IND
| |
Collapse
|
2
|
Pai V, Laughlin S, Ertl-Wagner B. Imaging of pediatric glioneuronal and neuronal tumors. Childs Nerv Syst 2024; 40:3007-3026. [PMID: 38960918 DOI: 10.1007/s00381-024-06502-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024]
Abstract
Glioneuronal tumors (GNTs) are an expanding group of primary CNS neoplasms, commonly affecting children, adolescents and young adults. Most GNTs are relatively indolent, low-grade, WHO grade I lesions. In the pediatric age group, GNTs have their epicenter in the cerebral cortex and present with seizures. Alterations in the mitogen-activated protein kinase (MAPK) pathway, which regulates cell growth, are implicated in tumorigenesis. Imaging not only plays a key role in the characterization and pre-surgical evaluation of GNTs but is also crucial role in follow-up, especially with the increasing use of targeted inhibitors and immunotherapies. In this chapter, we review the clinical and imaging perspectives of common pediatric GNTs.
Collapse
Affiliation(s)
- Vivek Pai
- Division of Neuroradiology, Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, 170 Elizabeth Street, Toronto, ON, M5G 1E8, Canada
- Department of Medical Imaging, University of Toronto, 263 McCaul St, 4Th Floor, Toronto, ON, M5T 1W7, Canada
| | - Suzanne Laughlin
- Division of Neuroradiology, Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, 170 Elizabeth Street, Toronto, ON, M5G 1E8, Canada
- Department of Medical Imaging, University of Toronto, 263 McCaul St, 4Th Floor, Toronto, ON, M5T 1W7, Canada
| | - Birgit Ertl-Wagner
- Division of Neuroradiology, Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, 170 Elizabeth Street, Toronto, ON, M5G 1E8, Canada.
- Department of Medical Imaging, University of Toronto, 263 McCaul St, 4Th Floor, Toronto, ON, M5T 1W7, Canada.
| |
Collapse
|
3
|
Tariq R. Predicting response to chemotherapy in brain tumor patients based on MRI features. Clin Neurol Neurosurg 2024; 244:108409. [PMID: 38959786 DOI: 10.1016/j.clineuro.2024.108409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Chemotherapy in brain tumors is tailored based on tumor type, grade, and molecular markers, which are crucial for predicting responses and survival outcomes. This review summarizes the role of chemotherapy in gliomas, glioneuronal and neuronal tumors, ependymomas, choroid plexus tumors, medulloblastomas, and meningiomas, discussing standard treatment protocols and recent developments in targeted therapies.Furthermore, the studies reporting the integration of MRI-based radiomics and deep learning models for predicting treatment outcomes are reviewed. Advances in MRI-based radiomics and deep learning models have significantly enhanced the prediction of chemotherapeutic benefits, survival prediction following chemotherapy, and differentiating tumor progression with psuedoprogression. These non-invasive techniques offer valuable insights into tumor characteristics and treatment responses, facilitating personalized therapeutic strategies. Further research is warranted to refine these models and expand their applicability across different brain tumor types.
Collapse
Affiliation(s)
- Rabeet Tariq
- Department of Neurosurgery, Section of Surgery, Aga Khan University Hospital, Karachi, Pakistan.
| |
Collapse
|
4
|
Szu JI, Tsigelny IF, Wojcinski A, Kesari S. Biological functions of the Olig gene family in brain cancer and therapeutic targeting. Front Neurosci 2023; 17:1129434. [PMID: 37274223 PMCID: PMC10232966 DOI: 10.3389/fnins.2023.1129434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/26/2023] [Indexed: 06/06/2023] Open
Abstract
The Olig genes encode members of the basic helix-loop-helix (bHLH) family of transcription factors. Olig1, Olig2, and Olig3 are expressed in both the developing and mature central nervous system (CNS) and regulate cellular specification and differentiation. Over the past decade extensive studies have established functional roles of Olig1 and Olig2 in development as well as in cancer. Olig2 overexpression drives glioma proliferation and resistance to radiation and chemotherapy. In this review, we summarize the biological functions of the Olig family in brain cancer and how targeting Olig family genes may have therapeutic benefit.
Collapse
Affiliation(s)
- Jenny I. Szu
- Department of Translational Neurosciences, Providence Saint John’s Health Center, Saint John’s Cancer Institute, Santa Monica, CA, United States
| | - Igor F. Tsigelny
- San Diego Supercomputer Center, University of California, San Diego, San Diego, CA, United States
- CureScience, San Diego, CA, United States
| | - Alexander Wojcinski
- Department of Translational Neurosciences, Providence Saint John’s Health Center, Saint John’s Cancer Institute, Santa Monica, CA, United States
- Pacific Neuroscience Institute, Santa Monica, CA, United States
| | - Santosh Kesari
- Department of Translational Neurosciences, Providence Saint John’s Health Center, Saint John’s Cancer Institute, Santa Monica, CA, United States
- Pacific Neuroscience Institute, Santa Monica, CA, United States
| |
Collapse
|
5
|
Tadipatri R, Eschbacher J, Fonkem E, Kresl J, Azadi A. Larotrectinib in NTRK Fusion-Positive High-Grade Glioneuronal Tumor: A Case Report. Cureus 2022; 14:e31449. [PMID: 36523718 PMCID: PMC9747057 DOI: 10.7759/cureus.31449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2022] [Indexed: 11/15/2022] Open
Abstract
Glioneuronal tumors are rare central nervous system tumors with heterogeneous histological and molecular features. While the majority are low grade, a small percentage can behave aggressively. Due to the rarity of these tumors, there is no consensus on how to treat high-grade glioneuronal tumors, and they are often managed similarly to glial tumors. With the advent of molecular profiling, management decisions are increasingly determined by molecular alterations in the tumor rather than the tumor type, which can be a useful approach for tumor types that do not have robust supportive clinical trial data due to low prevalence. We present a case of an 18-year-old patient with a high-grade glioneuronal neoplasm initially treated with craniospinal irradiation, vincristine, and cyclophosphamide. He presented eight years later with a recurrent tumor and was found to be positive for MEF2D-NTRK1 fusion. He was treated with surgical resection and postoperative intensity-modulated radiation therapy (IMRT; 55.8 Gy) with concurrent temozolomide, followed by the NTRK inhibitor larotrectinib. He achieved a radiographic response, with a decrease in residual enhancement and radiographic improvement over the course of treatment. He remained in clinical and radiographic remission for six months. This demonstrates the successful treatment of a high-grade glioneuronal NTRK fusion-positive tumor with larotrectinib, which has only been previously reported once in the literature.
Collapse
Affiliation(s)
| | | | - Ekokobe Fonkem
- Neuro-Oncology, Barrow Neurological Institute, Phoenix, USA
| | - John Kresl
- Radiation Oncology, Radiosurgery, Phoenix CyberKnife and Radiation Oncology Center, Phoenix, USA
| | - Amir Azadi
- Neuro-Oncology, Banner Health, Phoenix, USA
| |
Collapse
|
6
|
Vaz A, Cavalcanti MS, da Silva Junior EB, Ramina R, de Almeida Teixeira BC. Uncommon Glioneuronal Tumors: A Radiologic and Pathologic Synopsis. AJNR Am J Neuroradiol 2022; 43:1080-1089. [PMID: 35512827 PMCID: PMC9575428 DOI: 10.3174/ajnr.a7465] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/18/2021] [Indexed: 11/07/2022]
Abstract
Glioneuronal tumors are characterized exclusively by neurocytic elements (neuronal tumors) or a combination of neuronal and glial features (mixed neuronal-glial tumors). Most of these tumors occur in young patients and are related to epilepsy. While ganglioglioma, dysembryoplastic neuroepithelial tumor, and desmoplastic infantile tumor are common glioneuronal tumors, anaplastic ganglioglioma, papillary glioneuronal tumor, rosette-forming glioneuronal tumor, gangliocytoma, and central neurocytoma are less frequent. Advances in immunohistochemical and molecular diagnostics have improved the characterization of these tumors and favored the description of variants and new subtypes, some not yet classified by the World Health Organization. Not infrequently, the histologic findings of biopsies of glioneuronal tumors simulate low-grade glial neoplasms; however, some imaging findings favor the correct diagnosis, making neuroimaging essential for proper management. Therefore, the aim of this review was to present key imaging, histopathology, immunohistochemistry, and molecular findings of glioneuronal tumors and their variants.
Collapse
Affiliation(s)
- A Vaz
- From the Department of Pediatric Radiology (A.V., B.C.d.A.T.), Hospital Pequeno Príncipe, Curitiba, Paraná, Brazil .,Department of Internal Medicine (A.V., B.C.d.A.T.), Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - M S Cavalcanti
- Department of Pathology (M.S.C.), Neopath Diagnostics & Research Center, Curitiba, Paraná, Brazil
| | | | - R Ramina
- Departments of Neurosurgery (E.B.d.S.J., R.R.)
| | - B C de Almeida Teixeira
- From the Department of Pediatric Radiology (A.V., B.C.d.A.T.), Hospital Pequeno Príncipe, Curitiba, Paraná, Brazil.,Department of Internal Medicine (A.V., B.C.d.A.T.), Universidade Federal do Paraná, Curitiba, Paraná, Brazil.,Neuroradiology (B.C.d.A.T.), Instituto de Neurologia de Curitiba, Curitiba, Paraná, Brazil
| |
Collapse
|
7
|
Rubino S, Lynes J, McBride P, Sahebjam S, Mokhtari S, Farinhas JM, Perry A, Macaulay R, Vogelbaum MA. NTRK3 gene fusion in an adult ganglioglioma: illustrative case. JOURNAL OF NEUROSURGERY: CASE LESSONS 2022; 3:CASE21645. [PMID: 36130567 PMCID: PMC9379748 DOI: 10.3171/case21645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/13/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND
Gangliogliomas are well-differentiated, slow-growing glioneuronal neoplasms frequently reported to harbor upregulating alterations in the mitogen-activated protein kinase pathway, particularly serine–threonine protein kinase B-RAF alterations. Fusions involving neurotrophin tyrosine receptor kinase (NTRK) genes have rarely been reported in ganglioglioma. Similarly, echinoderm microtubule-associated protein-like (EML) 4 gene fusion has been described in lung cancer, but none has been reported in ganglioglioma.
OBSERVATIONS
This report discusses the care of a 72-year-old man presenting with medication-refractory, left-sided focal seizures who was found to have a nongadolinium-enhancing, T2-hyperintense, right frontoparietal lesion. The patient received resection, and histological analysis found a World Health Organization grade I ganglioglioma, with genetic analysis demonstrating an EML4-NTRK3 gene fusion protein.
LESSONS
To our knowledge, this is the first report of an NTRK3 fusion, EML4-NTRK3, in an adult ganglioglioma, which is otherwise mostly associated with BRAF alterations and activation of the mitogen-activated protein kinase signaling pathway. Further studies are needed to elucidate the function of the resultant fusion protein and determine whether it may serve as a future therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Arie Perry
- Department of Pathology, University of California, San Francisco, California
| | | | | |
Collapse
|
8
|
Fiani B, Runnels J, Sarhadi K, Sarno E, Kondilis A. Oncologic causes of oculopalatal tremors: neurophysiology and treatment. Acta Neurol Belg 2021; 121:1111-1116. [PMID: 34286476 DOI: 10.1007/s13760-021-01761-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 07/16/2021] [Indexed: 11/29/2022]
Abstract
Oculopalatal tremor (OPT) is an acquired pathology characterized by continuous and rhythmical soft palatal movements combined with pendular nystagmus. Aside from vascular lesions, oncological masses affecting the dentatorubro-olivary pathway can impair brainstem and/or cerebellar pathways, manifesting as dyssynchronous movement. In this review, we delve into the neurophysiology of OPT along with oncological causes and treatment options based on the most recent clinical trial data. This literature review includes medication treatment data from clinical trials enrolling individuals with features of OPT, including acquired pendular nystagmus (APN). Trials were deemed eligible for inclusion in this review if one or more participants had symptoms determined by the trial authors to be caused by OPT. Trials investigating the treatment of APN secondary to a separate cause, such as multiple sclerosis, were excluded from this review. Several early treatments failed to demonstrate a benefit for patients with APN due to OPT. Trials of anticholinergic agents were largely ineffective and poorly tolerated. Botulinum toxin A demonstrated improvement in APN symptoms. Most recently, trials including memantine and gabapentin have demonstrated success with attenuation of APN. Surgical modalities such as DBS have yet to show improvement, though with only a single case report as evidence. Oculopalatal tremor is a unique manifestation of posterior fossa tumors disrupting the Guillain-Mollaret triangle. Symptom control through medication management has had limited success attributed to poor response and medication intolerance. Surgical modalities like DBS may have an emerging role in OPT treatment by targeting dyssynchronous activity in the dentatorubro-olivary pathway.
Collapse
Affiliation(s)
- Brian Fiani
- Department of Neurosurgery, Desert Regional Medical Center, 1150 N. Indian Canyon Dr., Palm Springs, CA, 92262, USA.
| | - Juliana Runnels
- Department of Radiation Oncology, Mount Sinai Hospital, New York, NY, USA
| | - Kasra Sarhadi
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Erika Sarno
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Athanasios Kondilis
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
9
|
Fabris D, Karmelić I, Muharemović H, Sajko T, Jurilj M, Potočki S, Novak R, Vukelić Ž. Ganglioside Composition Distinguishes Anaplastic Ganglioglioma Tumor Tissue from Peritumoral Brain Tissue: Complementary Mass Spectrometry and Thin-Layer Chromatography Evidence. Int J Mol Sci 2021; 22:ijms22168844. [PMID: 34445547 PMCID: PMC8396361 DOI: 10.3390/ijms22168844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 11/23/2022] Open
Abstract
Gangliosides serve as antitumor therapy targets and aberrations in their composition strongly correlate with tumor growth and invasiveness. Anaplastic ganglioglioma is a rare, poorly characterized, malignant neuronal–glial tumor type. We present the first comparative characterization of ganglioside composition in anaplastic ganglioglioma vs. peritumoral and healthy brain tissues by combining mass spectrometry and thin-layer chromatography. Anaplastic ganglioglioma ganglioside composition was highly distinguishable from both peritumoral and healthy tissue despite having five to six times lower total content. Ten out of twelve MS-identified ganglioside classes, defined by unique glycan residues, were represented by a large number and considerable abundance of individual species with different fatty acid residues (C16–C24) in ceramide portions. The major structurally identified class was tumor-associated GD3 (>50%) with 11 species; GD3 (d18:1/24:0) being the most abundant. The dominant sphingoid base residue in ganglioside ceramides was sphingosine (d18:1), followed by eicosasphingosine (d20:1). The peritumoral tissue ganglioside composition was estimated as normal. Specific ganglioside composition and large variability of ganglioside ceramide structures determined in anaplastic ganglioglioma demonstrate realistic ganglioside expression patterns and correspond to the profile of high-grade malignancy brain tumors.
Collapse
Affiliation(s)
- Dragana Fabris
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; (I.K.); (S.P.)
- Correspondence: (D.F.); (Ž.V.)
| | - Ivana Karmelić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; (I.K.); (S.P.)
| | - Hasan Muharemović
- Department of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia;
| | - Tomislav Sajko
- Department of Neurosurgery, University Hospital Center “Sestre Milosrdnice”, Vinogradska cesta 29, 10000 Zagreb, Croatia; (T.S.); (M.J.)
| | - Mia Jurilj
- Department of Neurosurgery, University Hospital Center “Sestre Milosrdnice”, Vinogradska cesta 29, 10000 Zagreb, Croatia; (T.S.); (M.J.)
| | - Slavica Potočki
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; (I.K.); (S.P.)
| | - Ruđer Novak
- Department for Protemics, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Šalata 11, 10000 Zagreb, Croatia;
| | - Željka Vukelić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; (I.K.); (S.P.)
- Correspondence: (D.F.); (Ž.V.)
| |
Collapse
|