1
|
Antony D, Sheth P, Swenson A, Smoller C, Maguire K, Grossberg G. Recent advances in Alzheimer's disease therapy: clinical trials and literature review of novel enzyme inhibitors targeting amyloid precursor protein. Expert Opin Pharmacother 2025; 26:63-73. [PMID: 39628105 DOI: 10.1080/14656566.2024.2438317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/02/2024] [Indexed: 12/06/2024]
Abstract
INTRODUCTION Amyloid precursor protein (APP) plays a central role in the pathophysiology of Alzheimer's disease (AD). The accumulation of beta-amyloid protein is believed to be a crucial step in the development of AD. Therefore, understanding the complex biology of APP and its various cleavage products may be useful for developing effective therapeutic strategies for AD. AREAS COVERED The amyloidogenic pathway of APP processing involves proteolytic cleavage by two prominent secretases, γ-Secretase and β-secretase. In the late 2000s, multiple pharmaceutical drugs that inhibited γ-Secretase and β-Secretase were synthesized, some of which advanced to human clinical trials. Unfortunately, neither γ-Secretase nor β-secretase inhibitors have been approved by the FDA due to both lack of efficacy and concerns for serious side effects. EXPERT OPINION While targeting of Aβ accumulation through secretase inhibitors was halted due to severe side effects, γ-Secretase modulators (GSMs) have arisen as a potential alternative approach. First-generation GSMs could modulate γ-secretase activity without affecting Notch cleavage. However, to improve potency and brain penetration, second-generation GSMs were developed to reduce levels of the amylogenic form of Aβ, Aβ42, without affecting the NOTCH signaling pathway. Several of these drugs have progressed to clinical trials, although with mixed results. The development of GSM's continues to serve as a potentially safer approach to modulating Aβ production in AD treatment.
Collapse
Affiliation(s)
- Dominic Antony
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Poorva Sheth
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Aaron Swenson
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Charles Smoller
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | | | - George Grossberg
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Thomas J, Wilson S. Molecular and Therapeutic Targets for Amyloid-beta Plaques in Alzheimer's Disease: A Review Study. Basic Clin Neurosci 2024; 15:1-26. [PMID: 39291090 PMCID: PMC11403107 DOI: 10.32598/bcn.2021.3522.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/06/2021] [Accepted: 09/06/2021] [Indexed: 09/19/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive loss of cognition and a gradual decrease in memory. Although AD is considered the most persistent form of dementia and a global concern, no complete cure or agents that can completely halt the progression of AD have been found. In the past years, significant progress has been made in understanding the cellular and molecular changes associated with AD, and numerous drug targets have been identified for the development of drugs for this disease. Amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFT) are the major attributes of AD. Symptomatic relief is the only possible treatment available at present and a disease-modifying drug is of utmost importance. The development of drugs that can inhibit different targets responsible for the formation of plaques is a potential area in AD research. This review is not a complete list of all possible targets for AD but serves to highlight the targets related to Aβ pathology and pathways concerned with the formation of Aβ fragments. This shall serve as a prospect in the identification of Aβ plaque inhibitors and pave the strategies for newer drug treatments. Nevertheless, substantial research is done in this area but to bridle, the clinical difficulty remains a concern.
Collapse
Affiliation(s)
- Jaya Thomas
- Department of Pharmacology, School of Pharmacy University of Amrita Vishwavidyapeetham, Guntur, India
| | - Samson Wilson
- University of Amrita Vishwavidyapeetham, Coimbatore, India
| |
Collapse
|
3
|
Barbosa FAR, Canto RFS, Teixeira KF, de Souza AS, de Oliveira AS, Braga AL. Selenium-Derivative Compounds: A Review of New Perspectives in the Treatment of Alzheimer's Disease. Curr Med Chem 2023; 30:689-700. [PMID: 35209817 DOI: 10.2174/0929867329666220224161454] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/16/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the most prevalent types of dementia, affecting millions of older people worldwide. AD is stimulating efforts to develop novel molecules targeting its main features associated with a decrease in acetylcholine levels, an increase in oxidative stress and depositions of amyloid-β (Aβ) and tau protein. In this regard, selenium-containing compounds have been demonstrated as potential multi-targeted compounds in the treatment of AD. These compounds are known for their antioxidant and anticholinesterase properties, causing a decrease in Aβ aggregation. OBJECTIVE In this review, we approach structure-activity relationships of each compound, associating the decrease of ROS activity, an increase of tau-like activity and inhibition of AChE with a decrease in the self-aggregation of Aβ. METHODS We also verify that the molecular descriptors apol, nHBAcc and MlogP may be related to optimized pharmacokinetic properties for anti-AD drugs. RESULTS In our analysis, few selenium-derived compounds presented similar molecular features to FDA-approved drugs. CONCLUSION We suggest that unknown selenium-derived molecules with apol, nHBAcc and MlogP like FDA-approved drugs may be better successes with optimized pharmacokinetic properties in future studies in AD.
Collapse
Affiliation(s)
- Flavio A R Barbosa
- Department of Chemistry, Center for Physical and Mathematical Sciences, Federal University of Santa Catarina, Florianópolis-SC, Brazil
| | - Rômulo F S Canto
- Department of Pharmacosciences, Foundation Federal University of Health Sciences of Porto Alegre, Porto Alegre-RS, Brazil
| | - Kerolain F Teixeira
- Department of Exact Sciences and Education, Federal University of Santa Catarina, Blumenau-SC, Brazil
| | - Anacleto S de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo-SP, Brazil
| | - Aldo S de Oliveira
- Department of Exact Sciences and Education, Federal University of Santa Catarina, Blumenau-SC, Brazil
| | - Antonio L Braga
- Department of Chemistry, Center for Physical and Mathematical Sciences, Federal University of Santa Catarina, Florianópolis-SC, Brazil.,Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
4
|
Kaur G, Goyal B. Deciphering the Molecular Mechanism of Inhibition of β‐Secretase (BACE1) Activity by a 2‐Amino‐imidazol‐4‐one Derivative. ChemistrySelect 2022. [DOI: 10.1002/slct.202202561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gurmeet Kaur
- School of Chemistry & Biochemistry Thapar Institute of Engineering & Technology Patiala 147004 Punjab India
| | - Bhupesh Goyal
- School of Chemistry & Biochemistry Thapar Institute of Engineering & Technology Patiala 147004 Punjab India
| |
Collapse
|
5
|
Reiss AB, Montufar N, DeLeon J, Pinkhasov A, Gomolin IH, Glass AD, Arain HA, Stecker MM. Alzheimer Disease Clinical Trials Targeting Amyloid: Lessons Learned From Success in Mice and Failure in Humans. Neurologist 2021; 26:52-61. [PMID: 33646990 DOI: 10.1097/nrl.0000000000000320] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND The goal of slowing or halting the development of Alzheimer disease (AD) has resulted in the huge allocation of resources by academic institutions and pharmaceutical companies to the development of new treatments. The etiology of AD is elusive, but the aggregation of amyloid-β and tau peptide and oxidative processes are considered critical pathologic mechanisms. The failure of drugs with multiple mechanisms to meet efficacy outcomes has caused several companies to decide not to pursue further AD studies and has left the field essentially where it has been for the past 15 years. Efforts are underway to develop biomarkers for detection and monitoring of AD using genetic, imaging, and biochemical technology, but this is of minimal use if no intervention can be offered. REVIEW SUMMARY In this review, we consider the natural progression of AD and how it continues despite present attempts to modify the amyloid-related machinery to alter the disease trajectory. We describe the mechanisms and approaches to AD treatment targeting amyloid, including both passive and active immunotherapy as well as inhibitors of enzymes in the amyloidogenic pathway. CONCLUSION Lessons learned from clinical trials of amyloid reduction strategies may prove crucial for the leap forward toward novel therapeutic targets to treat AD.
Collapse
Affiliation(s)
- Allison B Reiss
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Natalie Montufar
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Joshua DeLeon
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Aaron Pinkhasov
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Irving H Gomolin
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Amy D Glass
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Hirra A Arain
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Mark M Stecker
- Fresno Center for Medical Education and Research, Department of Medicine, University of California-San Francisco, Fresno, CA
| |
Collapse
|
6
|
Ugbaja SC, Sanusi ZK, Appiah-Kubi P, Lawal MM, Kumalo HM. Computational modelling of potent β-secretase (BACE1) inhibitors towards Alzheimer's disease treatment. Biophys Chem 2020; 270:106536. [PMID: 33387910 DOI: 10.1016/j.bpc.2020.106536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/28/2022]
Abstract
Researchers have identified the β-amyloid precursor protein cleaving enzyme 1 (BACE1) in the multifactorial pathway of Alzheimer's disease (AD) as a drug target. The design and development of molecules to inhibit BACE1 as a potential cure for AD thus remained significant. Herein, we simulated two potent BACE1 inhibitors (AM-6494 and CNP-520) to understand their binding affinity at the atomistic level. AM-6494 is a newly reported potent BACE1 inhibitor with an IC50 value of 0.4 nM in vivo and now picked for preclinical considerations. Umibecestat (CNP-520), which was discontinued at human trials lately, was considered to enable a reasonable evaluation of our results. Using density functional theory (DFT) and Our Own N-layered Integrated molecular Orbital and Molecular Mechanics (ONIOM), we achieved the aim of this investigation. These computational approaches enabled the prediction of the electronic properties of AM-6494 and CNP-520 plus their binding energies when complexed with BACE1. For AM-6494 and CNP-520 interaction with protonated BACE1, the ONIOM calculation gave binding free energy of -62.849 and -33.463 kcal/mol, respectively. In the unprotonated model, we observed binding free energy of -59.758 kcal/mol in AM-6494. Taken together thermochemistry of the process and molecular interaction plot, AM-6494 is more favourable than CNP-520 towards the inhibition of BACE1. The protonated model gave slightly better binding energy than the unprotonated form. However, both models could sufficiently describe ligand binding to BACE1 at the atomistic level. Understanding the detailed molecular interaction of these inhibitors could serve as a basis for pharmacophore exploration towards improved inhibitor design.
Collapse
Affiliation(s)
- Samuel C Ugbaja
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Zainab K Sanusi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Patrick Appiah-Kubi
- Molecular Bio-computational and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Monsurat M Lawal
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa.
| | - Hezekiel M Kumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa.
| |
Collapse
|
7
|
Lo Giudice M, Mihalik B, Turi Z, Dinnyés A, Kobolák J. Calcilytic NPS 2143 Reduces Amyloid Secretion and Increases sAβPPα Release from PSEN1 Mutant iPSC-Derived Neurons. J Alzheimers Dis 2020; 72:885-899. [PMID: 31640098 PMCID: PMC6918902 DOI: 10.3233/jad-190602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite numerous efforts and studies over the last three decades, Alzheimer’s disease (AD) remains a disorder not fully understood and incurable so far. Development of induced pluripotent stem cell (iPSC) technology to obtain terminally differentiated neurons from adult somatic cells revolutionized the study of AD, providing a powerful tool for modelling the disease and for screening candidate drugs. Indeed, iPSC reprogramming allowed generation of neurons from both sporadic and familial AD patients with the promise to recapitulate the early pathological mechanisms in vitro and to identify novel targets. Interestingly, NPS 2143, a negative allosteric modulator of the calcium sensing receptor, has been indicated as a possible therapeutic for AD. In the present study, we assessed the potential of our iPSC-based familial AD cellular model as a platform for drug testing. We found that iPSC-derived neurons respond to treatment with γ-secretase inhibitor, modifying the physiological amyloid-β protein precursor (AβPP) processing and amyloid-β (Aβ) secretion. Moreover, we demonstrated the expression of calcium sensing receptor (CaSR) protein in human neurons derived from healthy and familial AD subjects. Finally, we showed that calcilytic NPS 2143 induced a changing of Aβ and sAβPPα secreted into conditioned media and modulation of CaSR and PSEN1 expression at the plasma membrane of AD neurons. Overall, our findings suggest that NPS 2143 affects important AD processes in a relevant in vitro system of familial AD.
Collapse
Affiliation(s)
- Maria Lo Giudice
- BioTalentum Ltd., Gödöllő, Hungary.,Molecular Animal Biotechnology Laboratory, Szent István University, Gödöllő, Hungary
| | | | | | - András Dinnyés
- BioTalentum Ltd., Gödöllő, Hungary.,Molecular Animal Biotechnology Laboratory, Szent István University, Gödöllő, Hungary
| | | |
Collapse
|
8
|
Kumari S, Carmona AV, Tiwari AK, Trippier PC. Amide Bond Bioisosteres: Strategies, Synthesis, and Successes. J Med Chem 2020; 63:12290-12358. [PMID: 32686940 DOI: 10.1021/acs.jmedchem.0c00530] [Citation(s) in RCA: 295] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The amide functional group plays a key role in the composition of biomolecules, including many clinically approved drugs. Bioisosterism is widely employed in the rational modification of lead compounds, being used to increase potency, enhance selectivity, improve pharmacokinetic properties, eliminate toxicity, and acquire novel chemical space to secure intellectual property. The introduction of a bioisostere leads to structural changes in molecular size, shape, electronic distribution, polarity, pKa, dipole or polarizability, which can be either favorable or detrimental to biological activity. This approach has opened up new avenues in drug design and development resulting in more efficient drug candidates introduced onto the market as well as in the clinical pipeline. Herein, we review the strategic decisions in selecting an amide bioisostere (the why), synthetic routes to each (the how), and success stories of each bioisostere (the implementation) to provide a comprehensive overview of this important toolbox for medicinal chemists.
Collapse
Affiliation(s)
- Shikha Kumari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Angelica V Carmona
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, Ohio 43614, United States
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
9
|
Wang C, Holtzman DM. Bidirectional relationship between sleep and Alzheimer's disease: role of amyloid, tau, and other factors. Neuropsychopharmacology 2020; 45:104-120. [PMID: 31408876 PMCID: PMC6879647 DOI: 10.1038/s41386-019-0478-5] [Citation(s) in RCA: 334] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/28/2019] [Accepted: 08/02/2019] [Indexed: 01/04/2023]
Abstract
As we age, we experience changes in our nighttime sleep and daytime wakefulness. Individuals afflicted with Alzheimer's disease (AD) can develop sleep problems even before memory and other cognitive deficits are reported. As the disease progresses and cognitive changes ensue, sleep disturbances become even more debilitating. Thus, it is imperative to gain a better understanding of the relationship between sleep and AD pathogenesis. We postulate a bidirectional relationship between sleep and the neuropathological hallmarks of AD; in particular, the accumulation of amyloid-β (Aβ) and tau. Our research group has shown that extracellular levels of both Aβ and tau fluctuate during the normal sleep-wake cycle. Disturbed sleep and increased wakefulness acutely lead to increased Aβ production and decreased Aβ clearance, whereas Aβ aggregation and deposition is enhanced by chronic increased wakefulness in animal models. Once Aβ accumulates, there is evidence in both mice and humans that this results in disturbed sleep. New findings from our group reveal that acute sleep deprivation increases levels of tau in mouse brain interstitial fluid (ISF) and human cerebrospinal fluid (CSF) and chronic sleep deprivation accelerates the spread of tau protein aggregates in neural networks. Finally, recent evidence also suggests that accumulation of tau aggregates in the brain correlates with decreased nonrapid eye movement (NREM) sleep slow wave activity. In this review, we first provide a brief overview of the AD and sleep literature and then highlight recent advances in the understanding of the relationship between sleep and AD pathogenesis. Importantly, the effects of the bidirectional relationship between the sleep-wake cycle and tau have not been previously discussed in other reviews on this topic. Lastly, we provide possible directions for future studies on the role of sleep in AD.
Collapse
Affiliation(s)
- Chanung Wang
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
10
|
Vanda D, Zajdel P, Soural M. Imidazopyridine-based selective and multifunctional ligands of biological targets associated with psychiatric and neurodegenerative diseases. Eur J Med Chem 2019; 181:111569. [DOI: 10.1016/j.ejmech.2019.111569] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/26/2019] [Accepted: 07/28/2019] [Indexed: 12/18/2022]
|
11
|
Abstract
Electron microscopy has enlarged the visual horizons of the morphological alterations in Alzheimer's disease (AD). Study of the mitochondria and Golgi apparatus in early cases of AD revealed the principal role that these important organelles play in the drama of pathogenic dialog of AD, substantially affecting energy production and supply, and protein trafficking in neurons and glia. In addition, study of the morphological alterations of the dendritic arbor, dendritic spines and neuronal synapses, which are associated with mitochondrial damage, may reasonably interpret the clinical phenomena of the irreversible decline of the mental faculties and an individual's personality changes. Electron microscopy also reveals the involvement of microvascular alterations in the etiopathogenic background of AD.
Collapse
|