1
|
Luo J, Liang M, Ma T, Dong B, Jia L, Su M. Identification of angiogenesis-related subtypes and risk models for predicting the prognosis of gastric cancer patients. Comput Biol Chem 2024; 112:108174. [PMID: 39191168 DOI: 10.1016/j.compbiolchem.2024.108174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Gastric cancer (GC) is a leading cause of cancer-related mortality and is characterized by significant heterogeneity, highlighting the need for further studies aimed at personalized treatment strategies. Tumor angiogenesis is critical for tumor development and metastasis, yet its role in molecular subtyping and prognosis prediction remains underexplored. This study aims to identify angiogenesis-related subtypes and develop a prognostic model for GC patients. Using data from The Cancer Genome Atlas (TCGA), we performed consensus cluster analysis on differentially expressed angiogenesis-related genes (ARGs), identifying two patient subtypes with distinct survival outcomes. Differentially expressed genes between the subtypes were analyzed via Cox and LASSO regression, leading to the establishment of a subtype-based prognostic model using a machine learning algorithm. Patients were classified into high- and low-risk groups based on the risk score. Validation was performed using independent datasets (ICGC and GSE15459). We utilized a deconvolution algorithm to investigate the tumor immune microenvironment in different risk groups and conducted analyses on genetic profiling, sensitivity and combination of anti-tumor drug. Our study identified ten prognostic signature genes, enabling the calculation of a risk score to predict prognosis and overall survival. This provides critical data for stratified diagnosis and treatment upon patient admission, monitoring disease progression throughout the entire course, evaluating immunotherapy efficacy, and selecting personalized medications for GC patients.
Collapse
Affiliation(s)
- Jie Luo
- Department of Medical Affairs, Huanggang Central Hospital, Huanggang, China
| | - Mengyun Liang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Tengfei Ma
- Clinical Trial Centers, Huanggang Central Hospital, Huanggang, China; Huanggang Institute of Translational Medicine, Huanggang, China
| | - Bizhen Dong
- Huanggang Institute of Translational Medicine, Huanggang, China
| | - Liping Jia
- Department of Respiratory and Critical Care Medicine, Huanggang Central Hospital, Huanggang, China.
| | - Meifang Su
- Department of Hematopathology, Huanggang Central Hospital, Huanggang, China.
| |
Collapse
|
2
|
Zhou H, Su D, Chen Y, Zhang Y, Huang P. KCND2: A prognostic biomarker and regulator of immune function in gastric cancer. Cancer Med 2023; 12:16279-16294. [PMID: 37347147 PMCID: PMC10469724 DOI: 10.1002/cam4.6236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Gastric cancer is a highly heterogeneous disease, which makes it challenging to develop effective targeted therapies. Although the potassium voltage-gated channel subfamily D (KCND) channels, particularly KCND2 (also known as Kv4.2), have found evidence of involvement in the occurrence and development of various cancers, there are still some limitations in our understanding of KCND2's roles in gastric cancer. METHODS We analyzed the correlation between KCND2 expression and clinical features as well as immune infiltration using the Cancer Genome Atlas (TCGA) database. Functional assays of KCND2 were conducted using Cell counting Kit-8 (CCK8), clone formation assay and cell cycle analysis. Additionally, immunofluorescence, flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR) techniques were used to investigate tumor proliferation and immune cell infiltration at different levels of KCND2 expression in vivo. RESULTS KCND2 was markedly elevated in gastric cancer and its expression appeared to link to different grades, T stages, and N stages. In addition, KCND2 was an independent predictor of prognosis, and its elevated levels in TCGA database revealed a more unfavorable prognosis for patients with gastric cancer. KCND2 strengthened the viability at the cellular level by boosting the proliferation of gastric cancer cells and reducing their death rate. Additionally, it also highlights that KCND2 the abilities of proliferating of gastric cancer cells by stimulating NF-κB both in cell and animal levels. In addition, the findings provided proof that in animal levels, KCND2 might regulate the immune system by associating with promoting M2 macrophages, which are known to play critical roles in cancer progression. Mechanistically, KCND2 was found to lead to the infiltration of M2 macrophages through activation of NF-κB, ultimately promoting the advancement of gastric cancer. CONCLUSION Overall, these findings suggest that KCND2 is likely to be available as an underlying therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Hongying Zhou
- SuZhou Medical College of Soochow UniversitySuzhouJiangsu ProvinceChina
- Department of Medical Oncology, Cancer CenterZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)HangzhouZhejiangChina
| | - Dan Su
- Department of Clinical MedicineHangzhou Medical CollegeHangzhouZhejiangChina
| | - Yun Chen
- Department of Medical Oncology, Cancer CenterZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)HangzhouZhejiangChina
| | - Yiwen Zhang
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer CenterZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)HangzhouZhejiangChina
| | - Ping Huang
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer CenterZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)HangzhouZhejiangChina
| |
Collapse
|
3
|
Rokavec M, Özcan E, Neumann J, Hermeking H. Development and Validation of a 15-gene Expression Signature with Superior Prognostic Ability in Stage II Colorectal Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:1689-1700. [PMID: 37654625 PMCID: PMC10467603 DOI: 10.1158/2767-9764.crc-22-0489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/24/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023]
Abstract
Currently, there is no consensus about the use of adjuvant chemotherapy for patients with stage II colorectal cancer. Here, we aimed to identify and validate a prognostic mRNA expression signature for the stratification of patients with stage II colorectal cancer according to their risk for relapse. First, publicly available mRNA expression profiling datasets from 792 primary, stage II colorectal cancers from six different training cohorts were analyzed to identify genes that are consistently associated with patient relapse-free survival (RFS). Second, the identified gene expression signature was experimentally validated using NanoString technology and computationally refined on primary colorectal cancer samples from 205 patients with stage II colorectal cancer. Third, the refined signature was validated in two independent publicly available cohorts of 166 patients with stage II colorectal cancer. Bioinformatics analysis of training cohorts identified a 61-gene signature that was highly significantly associated with RFS (HR = 37.08, P = 2.68*10-106, sensitivity = 89.29%, specificity = 89.61%, and AUC = 0.937). The experimental validation and refinement revealed a 15-gene signature that robustly predicted relapse in three independent cohorts: an in-house cohort (HR = 20.4, P = 8.73*10-23, sensitivity = 90.32%, specificity = 80.99%, AUC = 0.812), GSE161158 (HR = 5.81, P = 3.57*10-4, sensitivity = 64.29%, specificity = 81.67%, AUC = 0.796), and GSE26906 (HR = 7.698, P = 7.26*10-8, sensitivity = 61.54%, specificity = 78.33%, AUC = 0.752). In the pooled training cohort, the 15-gene signature (HR = 4.72, P = 7.76*10-25, sensitivity = 75%, specificity = 67.44%, AUC = 0.784) was superior to the Oncotype DX colon 7-gene signature (HR = 2.698, P = 6.3*10-8, sensitivity = 62.16%, specificity = 55.5%, AUC = 0.633). We report the identification and validation of a novel mRNA expression signature for robust prognostication and stratification of patients with stage II colorectal cancer, with superior performance in the analyzed validation cohorts when compared with clinicopathologic biomarkers and signatures currently used for stage II colorectal cancer prognostication. Significance We identified and validated a 15-gene expression signature for robust prognostication and stratification of patients with stage II colorectal cancer, with superior performance when compared with currently used biomarkers. Therefore, the 15-gene expression signature has the potential to improve the prognostication and treatment decisions for patients with stage II colorectal cancer.
Collapse
Affiliation(s)
- Matjaz Rokavec
- Experimental and Molecular Pathology, Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Elif Özcan
- Experimental and Molecular Pathology, Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jens Neumann
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
4
|
Yang S, Zhou P, Qi L, Wang Y, Li Y, Wang X. Promoting proliferation and tumorigenesis of breast cancer: KCND2's significance as a prognostic factor. Funct Integr Genomics 2023; 23:257. [PMID: 37522982 DOI: 10.1007/s10142-023-01183-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
In recent years, the potassium voltage-gated channel subfamily D (KCND) channels, particularly KCND2 (also known as Kv4.2), have been suggested to play a role in a variety of cancers, but their role in breast cancer has not yet been revealed. We analyzed RNA sequencing data from The Cancer Genome Atlas database and the Genotype-Tissue Expression database to investigate the differential expression of KCND2 in breast cancer and normal breast tissue. In addition, we leveraged GO and KEGG analysis techniques to gain a better understanding of the potential functional enrichment of 500 genes related to KCND2. Our findings were validated using collected tissue samples and clinical data from hospitals showed that KCND2 is a crucial independent factor in the prognosis of breast cancer patients. The higher the expression of KCND2, the shorter the survival time of breast cancer patients. Colony formation assay confirmed that KCND2 promotes the proliferation of breast cancer cells, whereas transwell assay and wound healing assay verified that KCND2 promoted breast cancer invasion and migration. In addition, 5-Ethynyl-2'-deoxyuridine (EdU) and flow cytometry revealed that KCND2 affected the cycle changes of breast cancer cells and contributed to the G1/S phase transition of breast cancer cells. Overall, our study demonstrates that KCND2 holds a promising potential as a significant target for breast cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Shengjie Yang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Pengpeng Zhou
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
- Department of Minimally Invasive Interventional Radiology, Shandong Second Provincial General Hospital, Jinan, 250117, China
| | - Lu Qi
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Yu Wang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Yang Li
- Clinical Laboratory, Zhangqiu People's Hospital, Jinan, 250200, China
| | - Xinghe Wang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
| |
Collapse
|
5
|
In Silico Analysis of Ion Channels and Their Correlation with Epithelial to Mesenchymal Transition in Breast Cancer. Cancers (Basel) 2022; 14:cancers14061444. [PMID: 35326596 PMCID: PMC8946083 DOI: 10.3390/cancers14061444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Breast cancer involves changes in the healthy cells of the breast resulting in rapid and abnormal division of cells that later spread to other parts of the body through the process of metastasis, which involves epithelial mesenchymal transition (EMT). Ion channels play a significant role in the switch from epithelial to mesenchymal transition through their contributions to cellular motility, cell volume regulation and cell cycle progression. Comprehensive computational analyses were performed to understand the role of ion channels in tumor/metastatic samples of breast cancer and their correlation with EMT. Abstract Uncontrolled growth of breast cells due to altered gene expression is a key feature of breast cancer. Alterations in the expression of ion channels lead to variations in cellular activities, thus contributing to attributes of cancer hallmarks. Changes in the expression levels of ion channels were observed as a consequence of EMT. Additionally, ion channels were reported in the activation of EMT and maintenance of a mesenchymal phenotype. Here, to identify altered ion channels in breast cancer patients, differential gene expression and weighted gene co-expression network analyses were performed using transcriptomic data. Protein–protein interactions network analysis was carried out to determine the ion channels interacting with hub EMT-related genes in breast cancer. Thirty-two ion channels were found interacting with twenty-six hub EMT-related genes. The identified ion channels were further correlated with EMT scores, indicating mesenchymal phenotype. Further, the pathway map was generated to represent a snapshot of deregulated cellular processes by altered ion channels and EMT-related genes. Kaplan–Meier five-year survival analysis and Cox regressions indicated the expression of CACNA1B, ANO6, TRPV3, VDAC1 and VDAC2 to be potentially associated with poor survival. Deregulated ion channels correlate with EMT-related genes and have a crucial role in breast cancer-associated tumorigenesis. Most likely, they are potential candidates for the determination of prognosis in patients with breast cancer.
Collapse
|
6
|
Lei GL, Li Z, Li YY, Hong ZX, Wang S, Bai ZF, Sun F, Yan J, Yu LX, Yang PH, Yang ZY. Long noncoding RNA FAM66C promotes tumor progression and glycolysis in intrahepatic cholangiocarcinoma by regulating hsa-miR-23b-3p/KCND2 axis. ENVIRONMENTAL TOXICOLOGY 2021; 36:2322-2332. [PMID: 34418280 DOI: 10.1002/tox.23346] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Long noncoding RNAs (lncRNAs) are known to be the important regulators in cancer progression. However, the role of lncRNA FAM66C (FAM66C) is yet to be investigated in intrahepatic cholangiocarcinoma (ICC). This study aimed to investigate the effects and related mechanisms of FAM66C in ICC. Human ICC tissues and cell lines were collected. The expression levels of FAM66C, hsa-miR-23b-3p (miR-23b-3p), and KCND2 were detected by qRT-RCR. The transfection experiments were employed to measure the effect of FAM66C on cell viabilities, migration, and invasion in ICC cells by CCK-8, transwell assays. Glycolysis was investigated by glucose consumption, lactate production and ATP levels. The dual-luciferase reporter and RNA pull down assays were conducted as a means of confirming the interactions between FAM66C, miR-23b-3p, and KCND2. Furthermore, the levels of the EMT-associated proteins (KCND2, GLUT1, PKM2, and LDHA) in ICC cells were detected by western blot. FAM66C was increased in ICC tissues and cells, increased cell viability, glycolysis, migration and invasion, and decreased apoptosis were shown in FAM66C overexpressing cells. Mechanistic analyses revealed that FAM66C regulated the downstream target gene KCND2 by sponging miR-23b-3p. FAM66C effect on ICC was further validated in murine xenograft assays. FAM66C knockdown cells gave rise to tumors that were smaller in size, consistent with the role of FAM66C as a promoter of in vivo tumor growth. These data revealed that FAM66C was able to drive ICC tumor progression and glycolytic activity via the miR-23b-3p/KCND2 axis, indicating FAM66C may be a viable target for treating ICC.
Collapse
Affiliation(s)
- Guang-Lin Lei
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhi Li
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuan-Yuan Li
- Senior Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhi-Xian Hong
- Senior Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Sen Wang
- Senior Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhi-Fang Bai
- Senior Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fang Sun
- Senior Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jin Yan
- Senior Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ling-Xiang Yu
- Senior Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Peng-Hui Yang
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhan-Yu Yang
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
High Expression of TTYH3 is Related to Poor Clinical Outcomes in Human Gastric Cancer. J Clin Med 2019; 8:jcm8111762. [PMID: 31652813 PMCID: PMC6912211 DOI: 10.3390/jcm8111762] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Ion channels play important roles in regulating various cellular processes and malignant transformation. Expressions of some chloride channels have been suggested to be associated with patient survival in gastric cancer (GC). However, little is known about the expression and function of TTYH3, a gene encoding a chloride ion channel, in cancer progression. Here, we comprehensively analyzed the expression of TTYH3 and its clinical outcome in GC using publicly available cancer gene expression and patient survival data through various databases. We examined the differences of TTYH3 expression between cancers and their normal tissues using the Oncomine, UALCAN, and GEO (Gene Expression Omnibus) databases. TTYH3 expression was investigated from immunohistochemistry images using the Human Protein Atlas database. Copy number alterations and mutations of TTYH3 were analyzed using cBioPortal. The co-expression profile of TTYH3 in GC was revealed using Oncomine. The gene ontology and pathway analyses were done using those co-expressed genes via the Enrichr tool to explore the predicted signaling pathways in GC. TTYH3 mRNA and protein levels in GC were significantly greater than those in normal tissue. Kaplan–Meier analysis revealed the upregulation of TTYH3 expression, which was significantly correlated with worse patient survival. Collectively, our data suggest that TTYH3 might be a potential prognostic marker for GC patients.
Collapse
|