1
|
Sun Q, Zheng S, Tang W, Wang X, Wang Q, Zhang R, Zhang N, Ping W. Prediction of lung adenocarcinoma prognosis and diagnosis with a novel model anchored in circadian clock-related genes. Sci Rep 2024; 14:18202. [PMID: 39107445 PMCID: PMC11303802 DOI: 10.1038/s41598-024-68256-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Lung adenocarcinoma is the most common primary lung cancer seen in the world, and identifying genetic markers is essential for predicting the prognosis of lung adenocarcinoma and improving treatment outcomes. It is well known that alterations in circadian rhythms are associated with a higher risk of cancer. Moreover, circadian rhythms play a regulatory role in the human body. Therefore, studying the changes in circadian rhythms in cancer patients is crucial for optimizing treatment. The gene expression data and clinical data were sourced from TCGA database, and we identified the circadian clock-related genes. We used the obtained TCGA-LUAD data set to build the model, and the other 647 lung adenocarcinoma patients' data were collected from two GEO data sets for external verification. A risk score model for circadian clock-related genes was constructed, based on the identification of 8 genetically significant genes. Based on ROC analyses, the risk model demonstrated a high level of accuracy in predicting the overall survival times of lung adenocarcinoma patients in training folds, as well as external data sets. This study has successfully constructed a risk model for lung adenocarcinoma prognosis, utilizing circadian rhythm as its foundation. This model demonstrates a dependable capacity to forecast the outcome of the disease, which can further guide the relevant mechanism of lung adenocarcinoma and combine behavioral therapy with treatment to optimize treatment decision-making.
Collapse
Affiliation(s)
- Qihang Sun
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shubin Zheng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Tang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyu Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruijie Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ni Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Wei Ping
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Wang S, Huang C, Zheng Y, Wu X, Zhong Y. NPAS2, transcriptionally activated by ARRB1, promotes the malignant behaviours of lung adenocarcinoma cells and regulates the reprogramming of glucose metabolism. Clin Exp Pharmacol Physiol 2024; 51:e13860. [PMID: 38584327 DOI: 10.1111/1440-1681.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024]
Abstract
Lung adenocarcinoma (LUAD) is a serious threat to public health and is accompanied by increased morbidity and mortality worldwide. Neuronal PAS domain protein2 (NPAS2) has been confirmed as an oncogene in LUAD; however, little is known about its molecular mechanism. Here, the expression level of NPAS2 was detected in LUAD cell lines and 16HBE cells. Gain- and loss-of-function experiments were performed. Cell Counting Kit-8, colony formation, flow cytometry, wound-healing and Transwell assays were conducted to assess cell proliferation, apoptosis, migration and invasion, respectively. Reprogramming of glucose metabolism was evaluated via oxygen consumption rate (OCR), complexes activities, lactic production and glucose consumption. The expression of critical proteins was examined by western blot. We demonstrated aberrant upregulation of NPAS2 and β-arrestin-1 (ARRB1) in LUAD cell lines. ARRB1 was found to be a critical transcription factor of NPAS2 with binding sites within the promoter region of NPAS2, thereby causing its transcriptional activation. Functional experiments revealed that NPAS2 depletion significantly inhibited the malignant behaviours of A549 cells by suppressing cell proliferation, migration, invasion and epithelial-mesenchymal transition and promoting cell apoptosis. Meanwhile, NPAS2 depletion increased OCR and activities of complexes (I, II, III and V), and reduced lactic acid production and glucose uptake in A549 cells, indicating that NPAS2 depletion inhibited aerobic glycolysis, accompanied by reduced expression of glycolytic enzymes. However, the changes caused by NPAS2 knockdown were partly restored by ARRB1 overexpression. In conclusion, our study suggests that ARRB1 could transcriptionally activate NPAS2, facilitating malignant activities and glycolysis, and ultimately promoting the progression of LUAD, proving a novel therapeutic strategy for the treatment of LUAD.
Collapse
Affiliation(s)
- Shenglan Wang
- Department of Clinical Laboratory, LongYan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Chunhong Huang
- Department of Clinical Laboratory, LongYan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Yanbin Zheng
- Department of Clinical Laboratory, LongYan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Xinjie Wu
- Emergency Department, LongYan People Hospital of Fujian, Longyan, Fujian, China
| | - Yutong Zhong
- Department of Clinical Laboratory, LongYan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| |
Collapse
|
3
|
Cao XM, Kang WD, Xia TH, Yuan SB, Guo CA, Wang WJ, Liu HB. High expression of the circadian clock gene NPAS2 is associated with progression and poor prognosis of gastric cancer: A single-center study. World J Gastroenterol 2023; 29:3645-3657. [PMID: 37398880 PMCID: PMC10311614 DOI: 10.3748/wjg.v29.i23.3645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/16/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND The prognostic assessment of patients after surgical resection of gastric cancer (GC) patients is critical. However, the role of the circadian clock gene NPAS2 expression in GC remains unknown.
AIM To explore the relationship between NPAS2 and the survival prognosis of GC patients and clarify its role in evaluating GC prognosis.
METHODS The tumor tissues and clinical data of 101 patients with GC were collected retrospectively. Immunohistochemical staining (IHC) was used to detect the expression of NPAS2 protein in GC and adjacent tissues. Univariate and multivariate Cox regression analysis was used to determine the independent prognostic factors of GC, and a nomogram prediction model was established. The receiver operating characteristic (ROC) curve, the ROC area under the curve, the calibration curve, and C-index were used to evaluate the predictive effectiveness of the model. Kaplan Meier analysis was used to compare the risk stratification of subgroups according to the median score in the nomogram model of each patient.
RESULTS Microarray IHC analysis showed that the positive rate of NPAS2 protein expression in GC tissues was 65.35%, which was significantly higher than 30.69% in adjacent tissues. The high expression of NPAS2 was correlated with tumor-node-metastasis (TNM) stage (P < 0.05), pN stage (P < 0.05), metastasis (P < 0.05), venous invasion (P < 0.05), lymphatic invasion (P < 0.05), and lymph node positive (P < 0.05) of GC. Kaplan Meier survival analysis showed that the 3-year overall survival (OS) of patients with high NPAS2 expression was significantly shortened (P < 0.0001). Univariate and multivariate COX regression analysis showed that TNM stage (P = 0.009), metastasis (P = 0.009), and NPAS2 expression (P = 0.020) were independent prognostic factors of OS in GC patients for 3 years. The nomogram prediction model based on independent prognostic factors has a C-Index of 0.740 (95%CI: 0.713-0.767). Furthermore, subgroup analysis showed that the 3-year OS time of the high-risk group was significantly lower than that of the low-risk group (P < 0.0001).
CONCLUSION NPAS2 is highly expressed in GC tissues and is closely related to worse OS in patients. Therefore, the evaluation of NPAS2 expression may be a potential marker for GC prognosis evaluation. Notably, the nomogram model based on NPAS2 can improve the accuracy of GC prognosis prediction and assist clinicians in postoperative patient management and decision-making.
Collapse
Affiliation(s)
- Xiao-Meng Cao
- Department of General Surgery, Gansu Provincial Hospital of TCM, Lanzhou 730050, Gansu Province, China
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730030, Gansu Province, China
| | - Wen-Di Kang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tian-Hong Xia
- Clinical Medicine College, Ningxia Medical University, Clinical Medicine college, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Shao-Bin Yuan
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730030, Gansu Province, China
| | - Chang-An Guo
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou 730030, Gansu Province, China
| | - Wen-Jie Wang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, Gansu Province, China
| | - Hong-Bin Liu
- Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, Gansu Province, China.
| |
Collapse
|
4
|
Hosseini K, Beirami SM, Forouhandeh H, Vahed SZ, Eyvazi S, Ramazani F, Tarhriz V, Ardalan M. The role of circadian gene timeless in gastrointestinal cancers. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
5
|
Zhang Z, Liang Z, Gao W, Yu S, Hou Z, Li K, Zeng P. Identification of circadian clock genes as regulators of immune infiltration in Hepatocellular Carcinoma. J Cancer 2022; 13:3199-3208. [PMID: 36118525 PMCID: PMC9475357 DOI: 10.7150/jca.71925] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/20/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Multiple studies have reported that the immune system is under the control of a circadian clock, especially in cancers, but how circadian clock genes shape tumor immune cell infiltration in hepatocellular carcinoma (HCC) remains unclear. Methods: The rhythmicity of circadian clock genes was investigated using the GETx database. The expression and methylation level of circadian clock genes in HCC and paracancerous was evaluated using the GETx and TCGA databases. The differential expression of circadian clock genes in HCC was analyzed using the "limma" package of the R 4.0.4 software. The prognosis of each circadian clock gene was accessed by Kaplan-Meier survival analysis and Cox proportional hazards regression analysis. Quantitative real-time PCR and immunohistochemistry (IHC) was carried out to confirm the results. The relationship between circadian rhythm and immune infiltration in HCC was evaluated using the TIMER database and the CIBERSORT algorithm. Results: In addition to RORA, RORB, and ARNTL2, there was a rhythmic expression of other circadian clock genes in liver tissue. The correlation between the expression of circadian clock genes differed when comparing HCC and liver tissue. HCC patients who express low levels of PER-1and CRY2 had a poor overall survival (OS). In contrast, patients with higher expression of NPAS2 had a poor prognosis. In HCC, the expression of the PER-1, CRY2, and NPAS2 genes was closely related to immune infiltration. Conclusion: Our study indicated the disruption of the expression of circadian clock-regulated genes in HCC and identified PER-1, CRY2, and NPAS2 as independent predictors of survival. These genes may be applied as candidate molecular targets for diagnosis and therapy of HCC.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Oncology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha 410006, P.R. China
| | - Zicheng Liang
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Wenhui Gao
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, P.R. China
| | - Shuxian Yu
- Department of Oncology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha 410006, P.R. China
| | - Zongwei Hou
- Department of Oncology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha 410006, P.R. China
| | - Kexin Li
- Department of Oncology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha 410006, P.R. China
| | - Puhua Zeng
- Department of Oncology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha 410006, P.R. China
| |
Collapse
|
6
|
Sanford ABA, da Cunha LS, Machado CB, de Pinho Pessoa FMC, Silva ANDS, Ribeiro RM, Moreira FC, de Moraes Filho MO, de Moraes MEA, de Souza LEB, Khayat AS, Moreira-Nunes CA. Circadian Rhythm Dysregulation and Leukemia Development: The Role of Clock Genes as Promising Biomarkers. Int J Mol Sci 2022; 23:ijms23158212. [PMID: 35897788 PMCID: PMC9332415 DOI: 10.3390/ijms23158212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
The circadian clock (CC) is a daily system that regulates the oscillations of physiological processes and can respond to the external environment in order to maintain internal homeostasis. For the functioning of the CC, the clock genes (CG) act in different metabolic pathways through the clock-controlled genes (CCG), providing cellular regulation. The CC’s interruption can result in the development of different diseases, such as neurodegenerative and metabolic disorders, as well as cancer. Leukemias correspond to a group of malignancies of the blood and bone marrow that occur when alterations in normal cellular regulatory processes cause the uncontrolled proliferation of hematopoietic stem cells. This review aimed to associate a deregulated CC with the manifestation of leukemia, looking for possible pathways involving CG and their possible role as leukemic biomarkers.
Collapse
Affiliation(s)
- Ana Beatriz Aguiar Sanford
- Unichristus University Center, Faculty of Biomedicine, Fortaleza 60430-275, CE, Brazil; (A.B.A.S.); (L.S.d.C.)
| | - Leidivan Sousa da Cunha
- Unichristus University Center, Faculty of Biomedicine, Fortaleza 60430-275, CE, Brazil; (A.B.A.S.); (L.S.d.C.)
| | - Caio Bezerra Machado
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (C.B.M.); (F.M.C.d.P.P.); (M.O.d.M.F.); (M.E.A.d.M.)
| | - Flávia Melo Cunha de Pinho Pessoa
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (C.B.M.); (F.M.C.d.P.P.); (M.O.d.M.F.); (M.E.A.d.M.)
| | - Abigail Nayara dos Santos Silva
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (A.N.d.S.S.); (F.C.M.); (A.S.K.)
| | | | - Fabiano Cordeiro Moreira
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (A.N.d.S.S.); (F.C.M.); (A.S.K.)
| | - Manoel Odorico de Moraes Filho
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (C.B.M.); (F.M.C.d.P.P.); (M.O.d.M.F.); (M.E.A.d.M.)
| | - Maria Elisabete Amaral de Moraes
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (C.B.M.); (F.M.C.d.P.P.); (M.O.d.M.F.); (M.E.A.d.M.)
| | - Lucas Eduardo Botelho de Souza
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo 14051-140, SP, Brazil;
| | - André Salim Khayat
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (A.N.d.S.S.); (F.C.M.); (A.S.K.)
| | - Caroline Aquino Moreira-Nunes
- Unichristus University Center, Faculty of Biomedicine, Fortaleza 60430-275, CE, Brazil; (A.B.A.S.); (L.S.d.C.)
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (C.B.M.); (F.M.C.d.P.P.); (M.O.d.M.F.); (M.E.A.d.M.)
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (A.N.d.S.S.); (F.C.M.); (A.S.K.)
- Northeast Biotechnology Network (RENORBIO), Itaperi Campus, Ceará State University, Fortaleza 60740-903, CE, Brazil
- Correspondence:
| |
Collapse
|
7
|
Xu T, Jin T, Lu X, Pan Z, Tan Z, Zheng C, Liu Y, Hu X, Ba L, Ren H, Chen J, Zhu C, Ge M, Huang P. A signature of circadian rhythm genes in driving anaplastic thyroid carcinoma malignant progression. Cell Signal 2022; 95:110332. [DOI: 10.1016/j.cellsig.2022.110332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 01/02/2023]
|
8
|
Integrative Molecular Analyses of an Individual Transcription Factor-Based Genomic Model for Lung Cancer Prognosis. DISEASE MARKERS 2021; 2021:5125643. [PMID: 34925645 PMCID: PMC8672105 DOI: 10.1155/2021/5125643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022]
Abstract
Objective Precision medicine with molecular profiles has revolutionized the management of lung cancer contributing to improved prognosis. Herein, we aimed to uncover the gene expression profiling of transcription factors (TFs) in lung cancer as well as to develop a TF-based genomic model. Methods We retrospectively curated lung cancer patients from public databases. Through comparing mRNA expression profiling between lung cancer and normal specimens, specific TFs were determined. Thereafter, a TF genomic model was developed with univariate Cox regression and stepwise multivariable Cox analyses, which was verified through the GSE72094 dataset. Gene set enrichment analyses (GSEA) were presented. Downstream targets of TFs were predicted with ChEA, JASPAR, and MotifMap projects, and their biological significance was investigated through the clusterProfiler algorithm. Results In the TCGA cohort, we proposed a TF-based genomic model, comprised of SATB2, HLF, and NPAS2. Lung cancer individuals were remarkably stratified into high- and low-risk groups. Survival analyses uncovered that high-risk populations presented unfavorable survival outcomes. ROCs confirmed the excellent predictive potency in patients' prognosis. Additionally, this model was an independent prognostic indicator in accordance with multivariate analyses. The clinical implication of the model was well verified in an independent dataset. High risk score was in relation to carcinogenic pathways. Downstream targets were characterized by immune and carcinogenic activation. Conclusion The proposed TF genomic model acts as a promising marker for estimation of lung cancer patients' outcomes. Prospective research is required for testing the clinical utility of the model in individualized management of lung cancer.
Collapse
|