1
|
Alipourgivi F, Motolani A, Qiu AY, Qiang W, Yang GY, Chen S, Lu T. Genetic Alterations of NF-κB and Its Regulators: A Rich Platform to Advance Colorectal Cancer Diagnosis and Treatment. Int J Mol Sci 2023; 25:154. [PMID: 38203325 PMCID: PMC10779007 DOI: 10.3390/ijms25010154] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer mortality in the United States, with an estimated 52,000 deaths in 2023. Though significant progress has been made in both diagnosis and treatment of CRC in recent years, genetic heterogeneity of CRC-the culprit for possible CRC relapse and drug resistance, is still an insurmountable challenge. Thus, developing more effective therapeutics to overcome this challenge in new CRC treatment strategies is imperative. Genetic and epigenetic changes are well recognized to be responsible for the stepwise development of CRC malignancy. In this review, we focus on detailed genetic alteration information about the nuclear factor (NF)-κB signaling, including both NF-κB family members, and their regulators, such as protein arginine methyltransferase 5 (PRMT5), and outer dynein arm docking complex subunit 2 (ODAD2, also named armadillo repeat-containing 4, ARMC4), etc., in CRC patients. Moreover, we provide deep insight into different CRC research models, with a particular focus on patient-derived xenografts (PDX) and organoid models, and their potential applications in CRC research. Genetic alterations on NF-κB signaling components are estimated to be more than 50% of the overall genetic changes identified in CRC patients collected by cBioportal for Cancer Genomics; thus, emphasizing its paramount importance in CRC progression. Consequently, various genetic alterations on NF-κB signaling may hold great promise for novel therapeutic development in CRC. Future endeavors may focus on utilizing CRC models (e.g., PDX or organoids, or isogenic human embryonic stem cell (hESC)-derived colonic cells, or human pluripotent stem cells (hPSC)-derived colonic organoids, etc.) to further uncover the underpinning mechanism of these genetic alterations in NF-κB signaling in CRC progression. Moreover, establishing platforms for drug discovery in dishes, and developing Biobanks, etc., may further pave the way for the development of innovative personalized medicine to treat CRC in the future.
Collapse
Affiliation(s)
- Faranak Alipourgivi
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (F.A.); (A.M.)
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| | - Aishat Motolani
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (F.A.); (A.M.)
| | - Alice Y. Qiu
- Center for Developmental Therapeutics, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; (A.Y.Q.); (W.Q.)
| | - Wenan Qiang
- Center for Developmental Therapeutics, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; (A.Y.Q.); (W.Q.)
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA;
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Guang-Yu Yang
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA;
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA;
| | - Tao Lu
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (F.A.); (A.M.)
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
2
|
2q35-rs13387042 variant and the risk of breast cancer: a case-control study. Mol Biol Rep 2022; 49:3549-3557. [PMID: 35445312 DOI: 10.1007/s11033-022-07195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 01/25/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Breast Cancer is the most frequent neoplasm diagnosed among women worldwide. Genetic background and lifestyle/environment play a significant role in the disease etiology. According to Genome-wide association studies, some single-nucleotide polymorphisms such as 2q35-rs13387042-(G/A) have been introduced to be associated with breast cancer risk and features. In this study, we aimed to evaluate the association between this variant and the risk of breast cancer in a cohort of Iranian women. METHODS Demographics and clinical information were collected by interview and using patients' medical records, respectively. DNA was extracted from 506 blood samples, including 184 patients and 322 controls, and genotyping was performed using allele specific-PCR. SPSS v16 was used for statistical analysis. RESULT Statistically significant association was observed between AA genotype and disease risk in all patients [padj = 0.048; ORadj = 2.13, 95% CI (1.01-4.50)] and also ER-positive breast cancers [padj = 0.015; ORadj = 2.12, 95% CI (1.16-3.88)]. There was no association between rs13387042 and histopathological characteristics of the disease. Furthermore, overall survival was not statistically associated with genotype and allelic models even after adjustment for stage and receptor status (p > 0.05). CONCLUSION There is a statistically significant association between 2q35-rs13387042 and breast cancer risk. rs13387042-AA genotype might be a risk-conferring factor for breast cancer development in the Iranian population. However, further consideration is suggested to confirm its role in risk assessment and probable association with other genetic markers.
Collapse
|