1
|
O'Sullivan D, Dowling P, Joyce H, McAuley E, McCann A, Henry M, McGovern B, Barham P, Kelleher FC, Murphy J, Kennedy S, Swan N, Moriarty M, Clynes M, Larkin A. A novel inhibitory anti-invasive MAb isolated using phenotypic screening highlights AnxA6 as a functionally relevant target protein in pancreatic cancer. Br J Cancer 2017; 117:1326-1335. [PMID: 28881357 PMCID: PMC5672937 DOI: 10.1038/bjc.2017.306] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/17/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022] Open
Abstract
Background: Discovery and validation of new antibody tractable targets is critical for the development of new antibody therapeutics to address unmet needs in oncology. Methods: A highly invasive clonal variant of the MDA-MB-435S cell line was used to generate monoclonal antibodies (MAbs), which were screened for anti-invasive activity against aggressive cancer cells in vitro. The molecular target of selected inhibitory MAb 9E1 was identified using immunoprecipitation/liquid chromatography-tandem mass spectrometry. The potential anti-tumour effects of MAb 9E1 were investigated in vitro together with immunohistochemical analysis of the 9E1 target antigen in normal and cancer tissues. Results: MAb 9E1 significantly decreases invasion in pancreatic, lung squamous and breast cancer cells and silencing of its target antigen, which was revealed as AnxA6, leads to markedly reduced invasive capacity of pancreatic and lung squamous cancer in vitro. IHC using MAb 9E1 revealed that AnxA6 exhibits a high prevalence of membrane immunoreactivity across aggressive tumour types with restricted expression observed in the majority of normal tissues. In pancreatic ductal adenocarcinoma, high AnxA6 IHC score correlated with the presence of tumour budding at the invasive front of tumours (P=0.082), the presence of perineural invasion (P= <0.0001) and showed a weak correlation with reduced survival (P=0.2242). Conclusions: This study highlights the use of phenotypic hybridoma screening as an effective strategy to select a novel function-blocking MAb, 9E1 with anti-cancer activity in vitro. Moreover, through characterisation of the 9E1 target antigen, AnxA6, our findings support further investigation of AnxA6 as a potential candidate target for antibody-mediated inhibition of pancreatic cancer.
Collapse
Affiliation(s)
- Dermot O'Sullivan
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Paul Dowling
- Department of Biology, National University of Ireland - Maynooth, Co. Kildare, Ireland
| | - Helena Joyce
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Edel McAuley
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Andrew McCann
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Brianan McGovern
- Department of Histopathology, St. Vincents' University Hospital, Elm Park, Dublin 4, Ireland
| | - Paul Barham
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Fergal C Kelleher
- Department of Medical Oncology, St. Vincents' University Hospital, Elm Park, Dublin 4, Ireland
| | - Jean Murphy
- Department of Histopathology, St. Vincents' University Hospital, Elm Park, Dublin 4, Ireland
| | - Susan Kennedy
- Department of Histopathology, St. Vincents' University Hospital, Elm Park, Dublin 4, Ireland
| | - Niall Swan
- Department of Histopathology, St. Vincents' University Hospital, Elm Park, Dublin 4, Ireland
| | - Michael Moriarty
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Annemarie Larkin
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
2
|
O’Sullivan D, Henry M, Joyce H, Walsh N, Auley EM, Dowling P, Swan N, Moriarty M, Barnham P, Clynes M, Larkin A. 7B7: a novel antibody directed against the Ku70/Ku80 heterodimer blocks invasion in pancreatic and lung cancer cells. Tumour Biol 2014; 35:6983-97. [DOI: 10.1007/s13277-014-1857-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/17/2014] [Indexed: 02/06/2023] Open
|
3
|
Márquez J, Kohli M, Arteta B, Chang S, Li WB, Goldblatt M, Vidal-Vanaclocha F. Identification of hepatic microvascular adhesion-related genes of human colon cancer cells using random homozygous gene perturbation. Int J Cancer 2013; 133:2113-22. [PMID: 23629598 DOI: 10.1002/ijc.28232] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/25/2013] [Indexed: 12/14/2022]
Abstract
Random homozygous gene perturbation (RHGP), in combination with liver sinusoidal endothelial cell (LSEC) adhesion screening of clonal colon cancer cells with perturbed genes, was used to identify genes contributing to the hepatic microvascular adhesion of colon cancer cells. Plasmid vector encoding transactivator and gene search vector were transfected into HT-29 human colorectal cancer cells to create a HT-29 RHGP cell library; the adhesion of these library cells to primary cultured mouse LSEC significantly decreased in the presence of RSL1 ligand (inducer), indicating that most of the genes contributing to HT-29 adhesion to LSEC were altered. Next, HT-29 RHGP cell library fractions with upregulated or silenced LSEC adhesion-related genes were isolated. Around 160 clones having altered expression in LSEC adhesion-related genes were obtained, and nine relevant protein-coding genes were identified. Some were proadhesive genes detected because of their overexpression in adherent HT-29 cells (DGCR8 and EFEMP1 genes) and their silenced status in nonadherent HT-29 cells (DGKE, DPY19L1, KIAA0753, PVR and USP11 genes). Others were antiadhesive genes detected because of their overexpression in nonadherent HT-29 cells (ITPKC gene) and their silenced status in adherent HT-29 cells (PPP6R2 gene). Silencing of PVR, DGCR8 and EFEMP1 genes decreased adhesion to LSEC and hepatic microvascular retention of HT-29 cells. The results conclude that RHGP was a valuable strategy for the discovery of mechanisms regulating microvascular adhesion of circulating colon cancer cells before hepatic metastasis formation. Identified genes may contribute to understand the metastatic process of colon cancer and to discovering molecular targets for hepatic metastasis therapeutics.
Collapse
Affiliation(s)
- Joana Márquez
- Department of Cellular Biology and Histology, Basque Country University School of Medicine and Dentistry, Leioa, Bizkaia, Spain
| | | | | | | | | | | | | |
Collapse
|