1
|
Tang X, Yan Z, Miao Y, Ha W, Li Z, Yang L, Mi D. Copper in cancer: from limiting nutrient to therapeutic target. Front Oncol 2023; 13:1209156. [PMID: 37427098 PMCID: PMC10327296 DOI: 10.3389/fonc.2023.1209156] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
As an essential nutrient, copper's redox properties are both beneficial and toxic to cells. Therefore, leveraging the characteristics of copper-dependent diseases or using copper toxicity to treat copper-sensitive diseases may offer new strategies for specific disease treatments. In particular, copper concentration is typically higher in cancer cells, making copper a critical limiting nutrient for cancer cell growth and proliferation. Hence, intervening in copper metabolism specific to cancer cells may become a potential tumor treatment strategy, directly impacting tumor growth and metastasis. In this review, we discuss the metabolism of copper in the body and summarize research progress on the role of copper in promoting tumor cell growth or inducing programmed cell death in tumor cells. Additionally, we elucidate the role of copper-related drugs in cancer treatment, intending to provide new perspectives for cancer treatment.
Collapse
Affiliation(s)
- Xiaolong Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zaihua Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yandong Miao
- Department of Oncology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Wuhua Ha
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Zheng Li
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lixia Yang
- Gansu Academy of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Denghai Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Gansu Academy of Traditional Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Diazzi S, Tartare-Deckert S, Deckert M. Bad Neighborhood: Fibrotic Stroma as a New Player in Melanoma Resistance to Targeted Therapies. Cancers (Basel) 2020; 12:cancers12061364. [PMID: 32466585 PMCID: PMC7352197 DOI: 10.3390/cancers12061364] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/18/2022] Open
Abstract
Current treatments for metastatic cutaneous melanoma include immunotherapies and drugs targeting key molecules of the mitogen-activated protein kinase (MAPK) pathway, which is often activated by BRAF driver mutations. Overall responses from patients with metastatic BRAF mutant melanoma are better with therapies combining BRAF and mitogen-activated protein kinase kinase (MEK) inhibitors. However, most patients that initially respond to therapies develop drug resistance within months. Acquired resistance to targeted therapies can be due to additional genetic alterations in melanoma cells and to non-genetic events frequently associated with transcriptional reprogramming and a dedifferentiated cell state. In this second scenario, it is possible to identify pro-fibrotic responses induced by targeted therapies that contribute to the alteration of the melanoma tumor microenvironment. A close interrelationship between chronic fibrosis and cancer has been established for several malignancies including breast and pancreatic cancers. In this context, the contribution of fibrosis to drug adaptation and therapy resistance in melanoma is rapidly emerging. In this review, we summarize recent evidence underlining the hallmarks of fibrotic diseases in drug-exposed and resistant melanoma, including increased remodeling of the extracellular matrix, enhanced actin cytoskeleton plasticity, high sensitivity to mechanical cues, and the establishment of an inflammatory microenvironment. We also discuss several potential therapeutic options for manipulating this fibrotic-like response to combat drug-resistant and invasive melanoma.
Collapse
Affiliation(s)
- Serena Diazzi
- C3M, Université Côte d’Azur, INSERM, 06204 Nice, France;
- Equipe labellisée Ligue Contre le Cancer 2016, 06204 Nice, France
| | - Sophie Tartare-Deckert
- C3M, Université Côte d’Azur, INSERM, 06204 Nice, France;
- Equipe labellisée Ligue Contre le Cancer 2016, 06204 Nice, France
- Correspondence: (S.T.-D.); (M.D.); Tel.: +33-(0)-489064310 (S.T.-D. & M.D.)
| | - Marcel Deckert
- C3M, Université Côte d’Azur, INSERM, 06204 Nice, France;
- Equipe labellisée Ligue Contre le Cancer 2016, 06204 Nice, France
- Correspondence: (S.T.-D.); (M.D.); Tel.: +33-(0)-489064310 (S.T.-D. & M.D.)
| |
Collapse
|
3
|
Chopra V, Sangarappillai RM, Romero‐Canelón I, Jones AM. Lysyl Oxidase Like‐2 (LOXL2): An Emerging Oncology Target. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vriddhi Chopra
- School of PharmacyUniversity of Birmingham Birmingham B15 2TT UK
| | | | | | - Alan M. Jones
- School of PharmacyUniversity of Birmingham Birmingham B15 2TT UK
| |
Collapse
|
4
|
Khan S, Zafar A, Naseem I. Copper-redox cycling by coumarin-di(2-picolyl)amine hybrid molecule leads to ROS-mediated DNA damage and apoptosis: A mechanism for cancer chemoprevention. Chem Biol Interact 2018; 290:64-76. [PMID: 29803612 DOI: 10.1016/j.cbi.2018.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/15/2018] [Accepted: 05/21/2018] [Indexed: 01/01/2023]
Abstract
Coumarin is an important bioactive pharmacophore. It is found in plants as a secondary metabolite and exhibits diverse pharmacological properties including anticancer effects against different malignancies. Therapeutic efficacy of coumarin derivatives depends on the pattern of substitution and conjugation with different moieties. Cancer cells contain elevated copper as compared to normal cells that plays a role in angiogenesis. Thus, targeting copper in malignant cells via copper chelators can serve as an attractive targeted anticancer strategy. Our previous efforts led to the synthesis of di(2-picolyl)amine-3(bromoacetyl)coumarin hybrid molecule (ligand-L) endowed with DNA/Cu(II) binding properties, and ROS generation ability in the presence of copper ions. In the present study, we aimed to validate copper-dependent cytotoxic action of ligand-L against malignant cells. For this, we used a cellular model system of copper (Cu) overloaded lymphocytes (CuOLs) to simulate malignancy-like condition. In CuOLs, lipid peroxidation/protein carbonylation, ROS generation, DNA fragmentation and apoptosis were investigated in the presence of ligand-L. Results showed that ligand-L-Cu(II) interaction leads to ROS generation, lipid peroxidation/protein carbonylation (oxidative stress parameters), DNA damage, up-regulation of p53 and mitochondrial-mediated apoptosis in treated lymphocytes. Further, pre-incubation with neocuproine (membrane permeable copper chelator) and ROS scavengers attenuated the DNA damage and apoptosis. These results suggest that cellular copper acts as molecular target for ligand-L to propagate redox cycling and generation of ROS via Fenton-like reaction leading to DNA damage and apoptosis. Further, we showed that ligand-L targets elevated copper in breast cancer MCF-7 and colon cancer HCT116 cells leading to a pro-oxidant inhibition of proliferation of cancer cells. In conclusion, we propose copper-dependent ROS-mediated mechanism for the cytotoxic action of ligand-L in malignant cells. Thus, targeting elevated copper represents an effective therapeutic strategy for selective cytotoxicity against malignant cells.
Collapse
Affiliation(s)
- Saman Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Atif Zafar
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Imrana Naseem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| |
Collapse
|
5
|
The histone demethylase KDM4B regulates peritoneal seeding of ovarian cancer. Oncogene 2016; 36:2565-2576. [PMID: 27869162 PMCID: PMC5418103 DOI: 10.1038/onc.2016.412] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 09/14/2016] [Accepted: 09/18/2016] [Indexed: 02/06/2023]
Abstract
Epithelial ovarian cancer (EOC) has poor prognosis and rapid recurrence because of widespread dissemination of peritoneal metastases at diagnosis. Multiple pathways contribute to the aggressiveness of ovarian cancer, including hypoxic signaling mechanisms. In this study, we have determined that the hypoxia-inducible histone demethylase KDM4B is expressed in ∼60% of EOC tumors assayed, including primary and matched metastatic tumors. Expression of KDM4B in tumors is positively correlated with expression of the tumor hypoxia marker CA-IX, and is robustly induced in EOC cell lines exposed to hypoxia. KDM4B regulates expression of metastatic genes and pathways, and loss of KDM4B increases H3K9 trimethylation at the promoters of target genes like LOXL2, LCN2 and PDGFB. Suppressing KDM4B inhibits ovarian cancer cell invasion, migration and spheroid formation in vitro. KDM4B also regulates seeding and growth of peritoneal tumors in vivo, where its expression corresponds to hypoxic regions. This is the first demonstration that a Jumonji-domain histone demethylase regulates cellular processes required for peritoneal dissemination of cancer cells, one of the predominant factors affecting prognosis of EOC. The pathways regulated by KDM4B may present novel opportunities to develop combinatorial therapies to improve existing therapies for EOC patients.
Collapse
|
6
|
Park KC, Fouani L, Jansson PJ, Wooi D, Sahni S, Lane DJR, Palanimuthu D, Lok HC, Kovačević Z, Huang MLH, Kalinowski DS, Richardson DR. Copper and conquer: copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics. Metallomics 2016; 8:874-86. [PMID: 27334916 DOI: 10.1039/c6mt00105j] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Copper is an essential trace metal required by organisms to perform a number of important biological processes. Copper readily cycles between its reduced Cu(i) and oxidised Cu(ii) states, which makes it redox active in biological systems. This redox-cycling propensity is vital for copper to act as a catalytic co-factor in enzymes. While copper is essential for normal physiology, enhanced copper levels in tumours leads to cancer progression. In particular, the stimulatory effect of copper on angiogenesis has been established in the last several decades. Additionally, it has been demonstrated that copper affects tumour growth and promotes metastasis. Based on the effects of copper on cancer progression, chelators that bind copper have been developed as anti-cancer agents. In fact, a novel class of thiosemicarbazone compounds, namely the di-2-pyridylketone thiosemicarbazones that bind copper, have shown great promise in terms of their anti-cancer activity. These agents have a unique mechanism of action, in which they form redox-active complexes with copper in the lysosomes of cancer cells. Furthermore, these agents are able to overcome P-glycoprotein (P-gp) mediated multi-drug resistance (MDR) and act as potent anti-oncogenic agents through their ability to up-regulate the metastasis suppressor protein, N-myc downstream regulated gene-1 (NDRG1). This review provides an overview of the metabolism and regulation of copper in normal physiology, followed by a discussion of the dysregulation of copper homeostasis in cancer and the effects of copper on cancer progression. Finally, recent advances in our understanding of the mechanisms of action of anti-cancer agents targeting copper are discussed.
Collapse
Affiliation(s)
- Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Janyasupab M, Lee YH, Zhang Y, Liu CW, Cai J, Popa A, Samia AC, Wang KW, Xu J, Hu CC, Wendt MK, Schiemann BJ, Thompson CL, Yen Y, Schiemann WP, Liu CC. Detection of Lysyl Oxidase-Like 2 (LOXL2), a Biomarker of Metastasis from Breast Cancers Using Human Blood Samples. ACTA ACUST UNITED AC 2016; 5:93-100. [PMID: 28670509 PMCID: PMC5493150 DOI: 10.2174/2210309005666150804195033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metastasis accounts for 90% of the mortality associated with breast cancer. Upregulated expression of members of the lysyl oxidase (LOX) family of secreted copper amine oxidases catalyzes the crosslinking of collagens and elastin in the extracellular matrix. LOXs are linked to the development and metastatic progression of breast cancers. Accordingly, aberrant expression of LOX-like 2 (LOXL2) is observed in poorly differentiated, high-grade tumors and is predictive of diseases recurrence, and for decreased overall patient survival. Therefore, LOXL2 expression may serve as a biomarker for breast cancer. Mechanistically, hydrogen peroxide is produced as a byproduct of LOXL2 when using an appropriate substrate, lysine. We exploited this chemistry to generate a revolutionary gold-based electrochemical biosensor capable of accurately detecting nanomolar quantities of LOXL2 in mouse blood, and in human blood samples. Two different sources of the blood samples obtained from breast cancer patients were used in this study indicating the applicability of detecting LOXL2 in breast cancers patients. Limited numbers of urine specimens from breast cancer patients were also tested. Collectively, all of these tests show the promise and potential of this biosensor for detecting LOXL2 as a surrogate biomarker of breast cancer. This work is described in WO 052962 A1 (2014).
Collapse
Affiliation(s)
- Metini Janyasupab
- Biomedical Engineering, King Monkut's Institute of Technology, Bangkok, Thailand
| | - Ying-Hui Lee
- Material Research Group, SRAM Asia, Taichung, 429, Taiwan
| | - Yuan Zhang
- College of Science, Shanghai University, Shanghai, 200444, China
| | - Chen W Liu
- Green Energy & Environmental Research Laboratory, Industrial Technology Research, Institute (ITRI), Hsing Chu, Taiwan
| | - Jieyi Cai
- Brown University, Providence, Rhode Island, USA 02912
| | - Adriana Popa
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Anna C Samia
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Kuan W Wang
- Institute of Materials & Engineering, National Central University, Jhongli, 320, Taiwan
| | - Jiaqiang Xu
- College of Science, Shanghai University, Shanghai, 200444, China
| | - Chi-Chang Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsing Chu, 30013Taiwan
| | - Michael K Wendt
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Barbara J Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Cheryl L Thompson
- Department of Family Medicine, University Hospitals, Case Medical Center, Case Western Reserve, University, Cleveland, OH 44016, USA
| | - Yun Yen
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.,Taipei Medical University, Taipei 110, Taiwan
| | - William P Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Chung C Liu
- Biomedical Engineering, King Monkut's Institute of Technology, Bangkok, Thailand
| |
Collapse
|
8
|
Denoyer D, Masaldan S, La Fontaine S, Cater MA. Targeting copper in cancer therapy: 'Copper That Cancer'. Metallomics 2015; 7:1459-76. [PMID: 26313539 DOI: 10.1039/c5mt00149h] [Citation(s) in RCA: 573] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Copper is an essential micronutrient involved in fundamental life processes that are conserved throughout all forms of life. The ability of copper to catalyze oxidation-reduction (redox) reactions, which can inadvertently lead to the production of reactive oxygen species (ROS), necessitates the tight homeostatic regulation of copper within the body. Many cancer types exhibit increased intratumoral copper and/or altered systemic copper distribution. The realization that copper serves as a limiting factor for multiple aspects of tumor progression, including growth, angiogenesis and metastasis, has prompted the development of copper-specific chelators as therapies to inhibit these processes. Another therapeutic approach utilizes specific ionophores that deliver copper to cells to increase intracellular copper levels. The therapeutic window between normal and cancerous cells when intracellular copper is forcibly increased, is the premise for the development of copper-ionophores endowed with anticancer properties. Also under investigation is the use of copper to replace platinum in coordination complexes currently used as mainstream chemotherapies. In comparison to platinum-based drugs, these promising copper coordination complexes may be more potent anticancer agents, with reduced toxicity toward normal cells and they may potentially circumvent the chemoresistance associated with recurrent platinum treatment. In addition, cancerous cells can adapt their copper homeostatic mechanisms to acquire resistance to conventional platinum-based drugs and certain copper coordination complexes can re-sensitize cancer cells to these drugs. This review will outline the biological importance of copper and copper homeostasis in mammalian cells, followed by a discussion of our current understanding of copper dysregulation in cancer, and the recent therapeutic advances using copper coordination complexes as anticancer agents.
Collapse
Affiliation(s)
- Delphine Denoyer
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia.
| | | | | | | |
Collapse
|
9
|
Karsdal MA, Manon-Jensen T, Genovese F, Kristensen JH, Nielsen MJ, Sand JMB, Hansen NUB, Bay-Jensen AC, Bager CL, Krag A, Blanchard A, Krarup H, Leeming DJ, Schuppan D. Novel insights into the function and dynamics of extracellular matrix in liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2015; 308:G807-30. [PMID: 25767261 PMCID: PMC4437019 DOI: 10.1152/ajpgi.00447.2014] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/04/2015] [Indexed: 02/06/2023]
Abstract
Emerging evidence suggests that altered components and posttranslational modifications of proteins in the extracellular matrix (ECM) may both initiate and drive disease progression. The ECM is a complex grid consisting of multiple proteins, most of which play a vital role in containing the essential information needed for maintenance of a sophisticated structure anchoring the cells and sustaining normal function of tissues. Therefore, the matrix itself may be considered as a paracrine/endocrine entity, with more complex functions than previously appreciated. The aims of this review are to 1) explore key structural and functional components of the ECM as exemplified by monogenetic disorders leading to severe pathologies, 2) discuss selected pathological posttranslational modifications of ECM proteins resulting in altered functional (signaling) properties from the original structural proteins, and 3) discuss how these findings support the novel concept that an increasing number of components of the ECM harbor signaling functions that can modulate fibrotic liver disease. The ECM entails functions in addition to anchoring cells and modulating their migratory behavior. Key ECM components and their posttranslational modifications often harbor multiple domains with different signaling potential, in particular when modified during inflammation or wound healing. This signaling by the ECM should be considered a paracrine/endocrine function, as it affects cell phenotype, function, fate, and finally tissue homeostasis. These properties should be exploited to establish novel biochemical markers and antifibrotic treatment strategies for liver fibrosis as well as other fibrotic diseases.
Collapse
Affiliation(s)
- Morten A. Karsdal
- 1Nordic Bioscience A/S, Herlev Hovedgade, Herlev, Denmark; ,2University of Southern Denmark, SDU, Odense, Denmark;
| | | | | | | | | | | | | | | | | | - Aleksander Krag
- 3Department of Gastroenterology and Hepatology, Odense University Hospital, University of Southern Denmark, Odense, Denmark;
| | - Andy Blanchard
- 4GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, United Kingdom;
| | - Henrik Krarup
- 5Section of Molecular Biology, Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark;
| | | | - Detlef Schuppan
- 6Institute of Translational Immunology and Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany; ,7Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
Chang J, Nicolau MM, Cox TR, Wetterskog D, Martens JWM, Barker HE, Erler JT. LOXL2 induces aberrant acinar morphogenesis via ErbB2 signaling. Breast Cancer Res 2014; 15:R67. [PMID: 23971878 PMCID: PMC3978831 DOI: 10.1186/bcr3461] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 08/23/2013] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Lysyl oxidase-like 2 (LOXL2) is a matrix-remodeling enzyme that has been shown to play a key role in invasion and metastasis of breast carcinoma cells. However, very little is known about its role in normal tissue homeostasis. Here, we investigated the effects of LOXL2 expression in normal mammary epithelial cells to gain insight into how LOXL2 mediates cancer progression. METHODS LOXL2 was expressed in MCF10A normal human mammary epithelial cells. The 3D acinar morphogenesis of these cells was assessed, as well as the ability of the cells to form branching structures on extracellular matrix (ECM)-coated surfaces. Transwell-invasion assays were used to assess the invasive properties of the cells. Clinically relevant inhibitors of ErbB2, lapatinib and Herceptin (traztuzumab), were used to investigate the role of ErbB2 signaling in this model. A retrospective study on a previously published breast cancer patient dataset was carried out by using Disease Specific Genomic Analysis (DSGA) to investigate the correlation of LOXL2 mRNA expression level with metastasis and survival of ErbB2-positive breast cancer patients. RESULTS Fluorescence staining of the acini revealed increased proliferation, decreased apoptosis, and disrupted polarity, leading to abnormal lumen formation in response to LOXL2 expression in MCF10A cells. When plated onto ECM, the LOXL2-expressing cells formed branching structures and displayed increased invasion. We noted that LOXL2 induced ErbB2 activation through reactive oxygen species (ROS) production, and ErbB2 inhibition by using Herceptin or lapatinib abrogated the effects of LOXL2 on MCF10A cells. Finally, we found LOXL2 expression to be correlated with decreased overall survival and metastasis-free survival in breast cancer patients with ErbB2-positive tumors. CONCLUSIONS These findings suggest that LOXL2 expression in normal epithelial cells can induce abnormal changes that resemble oncogenic transformation and cancer progression, and that these effects are driven by LOXL2-mediated activation of ErbB2. LOXL2 may also be a beneficial marker for breast cancer patients that could benefit most from anti-ErbB2 therapy.
Collapse
|
11
|
Kristensen JH, Karsdal MA, Genovese F, Johnson S, Svensson B, Jacobsen S, Hägglund P, Leeming DJ. The Role of Extracellular Matrix Quality in Pulmonary Fibrosis. Respiration 2014; 88:487-99. [DOI: 10.1159/000368163] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 08/25/2014] [Indexed: 11/19/2022] Open
|
12
|
Muhammad SA, Ali A, Ismail T, Zafar R, Ilyas U, Ahmad J. Insilico study of anti-carcinogenic lysyl oxidase-like 2 inhibitors. Comput Biol Chem 2014; 51:71-82. [DOI: 10.1016/j.compbiolchem.2014.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/10/2014] [Accepted: 03/10/2014] [Indexed: 02/07/2023]
|
13
|
Abstract
INTRODUCTION Myelofibrosis (MF), a Philadelphia chromosome-negative myeloproliferative neoplasm, is a life-threatening heterogeneous disorder characterized by dysregulation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling network. The clinical hallmarks of MF are progressive splenomegaly, anemia and debilitating symptoms attributable to ineffective hematopoiesis and excessive production of proinflammatory cytokines. AREAS COVERED This review describes the pathogenesis, clinical features and current treatment of MF, clinical data for ruxolitinib, a potent oral JAK1/JAK2 inhibitor and the only therapy approved for the treatment of MF, and agents in development for the treatment of MF. Information was derived from relevant MF articles identified in the published literature and abstracts of recent congresses. EXPERT OPINION Ruxolitinib reduces spleen size and alleviates MF-related symptoms, thereby improving quality of life. Ruxolitinib may increase the risk of anemia and thrombocytopenia and does not appear to reverse bone marrow fibrosis. Studies are exploring ruxolitinib dosing strategies for patients with low platelet counts and combination therapies. Several other JAK inhibitors and other agents (i.e., immunomodulators, antifibrotic agents, anti-anemia agents, mammalian target of rapamycin [mTOR] inhibitors, epigenetic modifiers, pegylated interferon-α2a) to treat various aspects of MF (i.e., to improve blood counts or forestall marrow fibrosis) are in early clinical development.
Collapse
Affiliation(s)
- Ehab Atallah
- Medical College of Wisconsin Cancer Center, Neoplastic Diseases and Related
Disorders, Department of Internal Medicine, Milwaukee, WI, USA
| | - Srdan Verstovsek
- University of Texas MD Anderson Cancer Center, Leukemia Department, 1515
Holcombe Boulevard, Houston, TX 77030-4009, USA
| |
Collapse
|
14
|
Smith A, Teknos TN, Pan Q. Epithelial to mesenchymal transition in head and neck squamous cell carcinoma. Oral Oncol 2012. [PMID: 23182398 DOI: 10.1016/j.oraloncology.2012.10.009] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Epithelial to mesenchymal transition (EMT) is a dynamic cellular process that is essential for the development of metastatic disease. During EMT, a tumor cell with epithelial characteristics transitions to a tumor cell with mesenchymal characteristics through modulation of cell polarity and adhesion. Two hallmark EMT proteins, E-Cadherin and Vimentin, are tightly controlled during EMT through multiple signal transduction pathways. Epidermal growth factor (EGF) and transforming growth factorβ (TGFβ) promote EMT by regulating a distinct set of transcription factors, including Snail and Twist. Snail, Twist, and Slug are integral to the induction of EMT through direct regulation of genes involved in cellular adhesion, migration, and invasion. This review highlights the current literature on EMT in HNSCC. Understanding the role of EMT will provide insight to the pathogenesis of disease progression and may lead to the development of novel anti-cancer therapeutics for metastatic HNSCC.
Collapse
Affiliation(s)
- Ashley Smith
- Department of Otolaryngology-Head and Neck Surgery, Wexner Medical Center at Ohio State University, 442 Tzagournis Medical Research, 420 West 12th Avenue, Columbus, OH 43210, USA
| | | | | |
Collapse
|
15
|
Karsdal MA, Nielsen MJ, Sand JM, Henriksen K, Genovese F, Bay-Jensen AC, Smith V, Adamkewicz JI, Christiansen C, Leeming DJ. Extracellular matrix remodeling: the common denominator in connective tissue diseases. Possibilities for evaluation and current understanding of the matrix as more than a passive architecture, but a key player in tissue failure. Assay Drug Dev Technol 2012; 11:70-92. [PMID: 23046407 DOI: 10.1089/adt.2012.474] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Increased attention is paid to the structural components of tissues. These components are mostly collagens and various proteoglycans. Emerging evidence suggests that altered components and noncoded modifications of the matrix may be both initiators and drivers of disease, exemplified by excessive tissue remodeling leading to tissue stiffness, as well as by changes in the signaling potential of both intact matrix and fragments thereof. Although tissue structure until recently was viewed as a simple architecture anchoring cells and proteins, this complex grid may contain essential information enabling the maintenance of the structure and normal functioning of tissue. The aims of this review are to (1) discuss the structural components of the matrix and the relevance of their mutations to the pathology of diseases such as fibrosis and cancer, (2) introduce the possibility that post-translational modifications (PTMs), such as protease cleavage, citrullination, cross-linking, nitrosylation, glycosylation, and isomerization, generated during pathology, may be unique, disease-specific biochemical markers, (3) list and review the range of simple enzyme-linked immunosorbent assays (ELISAs) that have been developed for assessing the extracellular matrix (ECM) and detecting abnormal ECM remodeling, and (4) discuss whether some PTMs are the cause or consequence of disease. New evidence clearly suggests that the ECM at some point in the pathogenesis becomes a driver of disease. These pathological modified ECM proteins may allow insights into complicated pathologies in which the end stage is excessive tissue remodeling, and provide unique and more pathology-specific biochemical markers.
Collapse
|
16
|
Cano A, Santamaría PG, Moreno-Bueno G. LOXL2 in epithelial cell plasticity and tumor progression. Future Oncol 2012; 8:1095-108. [PMID: 23030485 DOI: 10.2217/fon.12.105] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Several members of the lysyl oxidase family have recently emerged as important regulators of tumor progression. Among them, LOXL2 has been shown to be involved in tumor progression and metastasis of several tumor types, including breast carcinomas. Secreted LOXL2 participates in the remodeling of the extracellular matrix of the tumor microenvironment, in a similar fashion to prototypical lysyl oxidase. In addition, new intracellular functions of LOXL2 have been described, such as its involvement in the regulation of the epithelial-to-mesenchymal transition, epithelial cell polarity and differentiation mediated by transcriptional repression mechanisms. Importantly, intracellular (perinuclear) expression of LOXL2 is associated with poor prognosis and distant metastasis of specific tumor types, such as larynx squamous cell carcinoma and basal breast carcinomas. These recent findings open new avenues for the therapeutic utility of LOXL2.
Collapse
Affiliation(s)
- Amparo Cano
- Departamento de Bioquímica, UAM, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, IdiPAZ, Arzobispo Morcillo, 2, 28029 Madrid, Spain.
| | | | | |
Collapse
|
17
|
Abstract
The therapeutic targeting of extracellular proteins is becoming hugely attractive in light of evidence implicating the tumour microenvironment as pivotal in all aspects of tumour initiation and progression. Members of the lysyl oxidase (LOX) family of proteins are secreted by tumours and are the subject of much effort to understand their roles in cancer. In this Review we discuss the roles of members of this family in the remodelling of the tumour microenvironment and their paradoxical roles in tumorigenesis and metastasis. We also discuss how targeting this family of proteins might lead to a new avenue of cancer therapeutics.
Collapse
Affiliation(s)
- Holly E Barker
- Hypoxia & Metastasis Team, The Institute of Cancer Research, London SW3 6JB, UK
| | | | | |
Collapse
|