1
|
Heers H, Chwilka O, Huber J, Vogelmeier C, Koczulla AR, Baumbach JI, Boeselt T. VOC-based detection of prostate cancer using an electronic nose and ion mobility spectrometry: A novel urine-based approach. Prostate 2024. [PMID: 38497426 DOI: 10.1002/pros.24692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Many diseases leave behind specific metabolites which can be detected from breath and urine as volatile organic compounds (VOC). Our group previously described VOC-based methods for the detection of bladder cancer and urinary tract infections. This study investigated whether prostate cancer can be diagnosed from VOCs in urine headspace. METHODS For this pilot study, mid-stream urine samples were collected from 56 patients with histologically confirmed prostate cancer. A control group was formed with 53 healthy male volunteers matched for age who had recently undergone a negative screening by prostate-specific antigen (PSA) and digital rectal exam. Headspace measurements were performed with the electronic nose Cyranose 320TM . Statistical comparison was performed using principal component analysis, calculating Mahalanobis distance, and linear discriminant analysis. Further measurements were carried out with ion mobility spectrometry (IMS) to compare detection accuracy and to identify potential individual analytes. Bonferroni correction was applied for multiple testing. RESULTS The electronic nose yielded a sensitivity of 77% and specificity of 62%. Mahalanobis distance was 0.964, which is indicative of limited group separation. IMS identified a total of 38 individual analytical peaks, two of which showed significant differences between groups (p < 0.05). To discriminate between tumor and controls, a decision tree with nine steps was generated. This model led to a sensitivity of 98% and specificity of 100%. CONCLUSIONS VOC-based detection of prostate cancer seems feasible in principle. While the first results with an electronic nose show some limitations, the approach can compete with other urine-based marker systems. However, it seems less reliable than PSA testing. IMS is more accurate than the electronic nose with promising sensitivity and specificity, which warrants further research. The individual relevant metabolites identified by IMS should further be characterized using gas chromatography/mass spectrometry to facilitate potential targeted rapid testing.
Collapse
Affiliation(s)
- Hendrik Heers
- Department of Urology, Philipps-Universität Marburg, Marburg, Germany
| | - Oliver Chwilka
- Department of Urology, Philipps-Universität Marburg, Marburg, Germany
| | - Johannes Huber
- Department of Urology, Philipps-Universität Marburg, Marburg, Germany
| | - Claus Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, Philipps-Universität Marburg, Marburg, Germany
| | - Andreas Rembert Koczulla
- Department of Medicine, Pulmonary and Critical Care Medicine, Philipps-Universität Marburg, Marburg, Germany
- Department of Pulmonology, Schoen-Kliniken, Berchtesgaden, Germany
| | - Jörg Ingo Baumbach
- Department of Biochemical and Chemical Engineering, Technical University of Dortmund, Dortmund, Germany
| | - Tobias Boeselt
- Department of Medicine, Pulmonary and Critical Care Medicine, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
2
|
Oxner M, Trang A, Mehta J, Forsyth C, Swanson B, Keshavarzian A, Bhushan A. The Versatility and Diagnostic Potential of VOC Profiling for Noninfectious Diseases. BME FRONTIERS 2023; 4:0002. [PMID: 37849665 PMCID: PMC10521665 DOI: 10.34133/bmef.0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/11/2022] [Indexed: 10/19/2023] Open
Abstract
A variety of volatile organic compounds (VOCs) are produced and emitted by the human body every day. The identity and concentration of these VOCs reflect an individual's metabolic condition. Information regarding the production and origin of VOCs, however, has yet to be congruent among the scientific community. This review article focuses on the recent investigations of the source and detection of biological VOCs as a potential for noninvasive discrimination between healthy and diseased individuals. Analyzing the changes in the components of VOC profiles could provide information regarding the molecular mechanisms behind disease as well as presenting new approaches for personalized screening and diagnosis. VOC research has prioritized the study of cancer, resulting in many research articles and reviews being written on the topic. This review summarizes the information gained about VOC cancer studies over the past 10 years and looks at how this knowledge correlates with and can be expanded to new and upcoming fields of VOC research, including neurodegenerative and other noninfectious diseases. Recent advances in analytical techniques have allowed for the analysis of VOCs measured in breath, urine, blood, feces, and skin. New diagnostic approaches founded on sensor-based techniques allow for cheaper and quicker results, and we compare their diagnostic dependability with gas chromatography- and mass spectrometry-based techniques. The future of VOC analysis as a clinical practice and the challenges associated with this transition are also discussed and future research priorities are summarized.
Collapse
Affiliation(s)
- Micah Oxner
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Allyson Trang
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Jhalak Mehta
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Christopher Forsyth
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Section of Gastroenterology, Rush Medical College, Chicago, IL 60612, USA
| | - Barbara Swanson
- Department of Adult Health and Gerontological Nursing, Rush University College of Nursing, Chicago, IL 60612, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Section of Gastroenterology, Rush Medical College, Chicago, IL 60612, USA
| | - Abhinav Bhushan
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
3
|
Giró Benet J, Seo M, Khine M, Gumà Padró J, Pardo Martnez A, Kurdahi F. Breast cancer detection by analyzing the volatile organic compound (VOC) signature in human urine. Sci Rep 2022; 12:14873. [PMID: 36050339 PMCID: PMC9435419 DOI: 10.1038/s41598-022-17795-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/31/2022] [Indexed: 11/12/2022] Open
Abstract
A rising number of authors are drawing evidence on the diagnostic capacity of specific volatile organic compounds (VOCs) resulting from some body fluids. While cancer incidence in society is on the rise, it becomes clear that the analysis of these VOCs can yield new strategies to mitigate advanced cancer incidence rates. This paper presents the methodology implemented to test whether a device consisting of an electronic nose inspired by a dog's olfactory system and olfactory neurons is significantly informative to detect breast cancer (BC). To test this device, 90 human urine samples were collected from control subjects and BC patients at a hospital. To test this system, an artificial intelligence-based classification algorithm was developed. The algorithm was firstly trained and tested with data resulting from gas chromatography-mass spectrometry (GC-MS) urine readings, leading to a classification rate of 92.31%, sensitivity of 100.00%, and specificity of 85.71% (N = 90). Secondly, the same algorithm was trained and tested with data obtained with our eNose prototype hardware, and class prediction was achieved with a classification rate of 75%, sensitivity of 100%, and specificity of 50%.
Collapse
Affiliation(s)
- Judit Giró Benet
- Center for Embedded Cyber-Physical Systems (CEPS), University of California Irvine (UCI), Irvine, 92697, USA.
| | - Minjun Seo
- Center for Embedded Cyber-Physical Systems (CEPS), University of California Irvine (UCI), Irvine, 92697, USA
| | - Michelle Khine
- Department of Biomedical Engineering, University of California Irvine (UCI), Irvine, 92697, USA
| | - Josep Gumà Padró
- South Catalonia Oncology Institute (IOCS), Sant Joan de Reus University Hospital, IISPV, Rovira i Virgili University, 43204, Reus, Spain
| | - Antonio Pardo Martnez
- Department of Electronic and Biomedical Engineering, Universitat de Barcelona (UB), 08028, Barcelona, Spain
| | - Fadi Kurdahi
- Center for Embedded Cyber-Physical Systems (CEPS), University of California Irvine (UCI), Irvine, 92697, USA
| |
Collapse
|
4
|
Waltman CG, Marcelissen TAT, van Roermund JGH. Exhaled-breath Testing for Prostate Cancer Based on Volatile Organic Compound Profiling Using an Electronic Nose Device (Aeonose™): A Preliminary Report. Eur Urol Focus 2018; 6:1220-1225. [PMID: 30482583 DOI: 10.1016/j.euf.2018.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/20/2018] [Accepted: 11/15/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Prostate biopsy, an invasive examination, is the gold standard for diagnosing prostate cancer (PCa). There is a need for a novel noninvasive diagnostic tool that achieves a significantly high pretest probability for PCa, reducing unnecessary biopsy numbers. Recent studies have shown that volatile organic compounds (VOCs) in exhaled breath can be used to detect different types of cancers via training of an artificial neural network (ANN). OBJECTIVE To determine whether exhaled-breath analysis using a handheld electronic nose device can be used to discriminate between VOC patterns between PCa patients and healthy individuals. DESIGN, SETTING, AND PARTICIPANTS This prospective pilot study was conducted in the outpatient urology clinic of the Maastricht University Medical Center, the Netherlands. Patients with histologically proven PCa were already included before initial biopsy or during follow-up, with no prior treatment for their PCa. Urological patients with negative biopsies in the past year or patients with prostate enlargement (PE) with low or stable serum prostate-specific antigen were used as controls. Exhaled breath was probed from 85 patients: 32 with PCa and 53 controls (30 having negative biopsies and 23 PE). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Patient characteristics were statistically analyzed using independent sample t test and Pearson's chi-square test. Data analysis was performed by Aethena software after data compression using the TUCKER3 algorithm. ANN models were trained and evaluated using the leave-10%-out cross-validation method. RESULTS AND LIMITATIONS Our trained ANN showed an accuracy of 0.75, with an area under the curve of 0.79 with sensitivity and specificity of 0.84 (95% confidence interval [CI] 0.66-0.94) and 0.70 (95% CI 0.55-0.81) respectively, comparing PCa with control individuals. The negative predictive value was found to be 0.88. The main limitation is the relatively small sample size. CONCLUSIONS Our findings imply that the Aeonose allows us to discriminate between patients with untreated, histologically proven primary PCa and control patients based on exhaled-breath analysis. PATIENT SUMMARY We explored the possibility of exhaled-breath analysis using an electronic nose, to be used as a noninvasive tool in clinical practice, as a pretest for diagnosing prostate cancer. We found that the electronic nose was able to discriminate between prostate cancer patients and control individuals.
Collapse
Affiliation(s)
- Claire G Waltman
- Department of Urology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Tom A T Marcelissen
- Department of Urology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Joep G H van Roermund
- Department of Urology, Maastricht University Medical Centre, Maastricht, The Netherlands.
| |
Collapse
|
5
|
Broza YY, Vishinkin R, Barash O, Nakhleh MK, Haick H. Synergy between nanomaterials and volatile organic compounds for non-invasive medical evaluation. Chem Soc Rev 2018; 47:4781-4859. [PMID: 29888356 DOI: 10.1039/c8cs00317c] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article is an overview of the present and ongoing developments in the field of nanomaterial-based sensors for enabling fast, relatively inexpensive and minimally (or non-) invasive diagnostics of health conditions with follow-up by detecting volatile organic compounds (VOCs) excreted from one or combination of human body fluids and tissues (e.g., blood, urine, breath, skin). Part of the review provides a didactic examination of the concepts and approaches related to emerging sensing materials and transduction techniques linked with the VOC-based non-invasive medical evaluations. We also present and discuss diverse characteristics of these innovative sensors, such as their mode of operation, sensitivity, selectivity and response time, as well as the major approaches proposed for enhancing their ability as hybrid sensors to afford multidimensional sensing and information-based sensing. The other parts of the review give an updated compilation of the past and currently available VOC-based sensors for disease diagnostics. This compilation summarizes all VOCs identified in relation to sickness and sampling origin that links these data with advanced nanomaterial-based sensing technologies. Both strength and pitfalls are discussed and criticized, particularly from the perspective of the information and communication era. Further ideas regarding improvement of sensors, sensor arrays, sensing devices and the proposed workflow are also included.
Collapse
Affiliation(s)
- Yoav Y Broza
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| | | | | | | | | |
Collapse
|
6
|
A randomized trial of early detection of clinically significant prostate cancer (ProScreen): study design and rationale. Eur J Epidemiol 2017; 32:521-527. [PMID: 28762124 DOI: 10.1007/s10654-017-0292-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/27/2017] [Indexed: 12/11/2022]
Abstract
The current evidence of PSA-based prostate cancer screening shows a reduction in cause-specific mortality, but with substantial overdiagnosis. Recently, new developments in detection of clinically relevant prostate cancer include multiple kallikreins as biomarkers besides PSA, and multiparametric magnetic resonance imaging (mpMRI) for biopsy decision. They offer opportunities for improving the outcomes in screening, particularly reduction in overdiagnosis and higher specificity for potentially lethal cancer. A population-based randomized screening trial will be started, with 67,000 men aged 55-67 years at entry. A quarter of the men will be allocated to the intervention arm, and invited to screening. The control arm will receive no intervention. All men in the screening arm will be offered a serum PSA determination. Those with PSA of 3 ng/ml or higher will have an additional multi-kallikrein panel and those with indications of increased risk of clinically relevant prostate cancer will undergo mpMRI. Men with a malignancy-suspect finding in MRI are referred to targeted biopsies. Screening interval is 6 years for men with baseline PSA < 1.5 ng/ml, 4 years with PSA 1.5-3.0 and 2 years if initial PSA > 3. The main outcome of the trial is prostate cancer mortality, with analysis at 10 and 15 years. The statistical power is sufficient for detecting a 28% reduction at 10 years and 22% at 15 years. The proposed study has the potential to provide the evidence to justify screening as a public health policy if mortality benefit can be sustained with substantially reduced overdiagnosis.
Collapse
|
7
|
Raninen K, Lappi J, Kolehmainen M, Kolehmainen M, Mykkänen H, Poutanen K, Raatikainen O. Diet-derived changes by sourdough-fermented rye bread in exhaled breath aspiration ion mobility spectrometry profiles in individuals with mild gastrointestinal symptoms. Int J Food Sci Nutr 2017; 68:987-996. [PMID: 28391735 DOI: 10.1080/09637486.2017.1312296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The potential of utilising exhaled breath volatile organic compound (VOC) profiles in studying diet-derived metabolic changes was examined. After a four-week initial diet period with white wheat bread (WW), seven participants received in randomised order high-fibre diets containing sourdough whole grain rye bread (WGR) or white wheat bread enriched with bioprocessed rye bran (WW + BRB), both for 4 weeks. Alveolar exhaled breath samples were analysed with ChemPro®100i analyser (Environics OY, Mikkeli, Finland) at the end of each diet period in fasting state and after a standardised meal. The AIMS signal intensities in fasting state were different after the WGR diet as compared to other diets. The result suggests that WGR has metabolic effects not completely explained by the rye fibre content of the diet. This study encourages to utilise the exhaled breath VOC profile analysis as an early screening tool in studying physiological functionality of foods.
Collapse
Affiliation(s)
- Kaisa Raninen
- a Institute of Public Health and Clinical Nutrition, Ita-Suomen Yliopisto Kuopion Kampus , Kuopio, Finland
| | - Jenni Lappi
- a Institute of Public Health and Clinical Nutrition, Ita-Suomen Yliopisto Kuopion Kampus , Kuopio, Finland
| | - Mikko Kolehmainen
- b Department of Environmental and Biological Sciences , University of Eastern Finland , Kuopio, Finland
| | - Marjukka Kolehmainen
- a Institute of Public Health and Clinical Nutrition, Ita-Suomen Yliopisto Kuopion Kampus , Kuopio, Finland
| | - Hannu Mykkänen
- a Institute of Public Health and Clinical Nutrition, Ita-Suomen Yliopisto Kuopion Kampus , Kuopio, Finland
| | - Kaisa Poutanen
- c VTT Technical Research Centre of Finland , Espoo, Finland
| | - Olavi Raatikainen
- a Institute of Public Health and Clinical Nutrition, Ita-Suomen Yliopisto Kuopion Kampus , Kuopio, Finland
| |
Collapse
|
8
|
Lavra L, Catini A, Ulivieri A, Capuano R, Baghernajad Salehi L, Sciacchitano S, Bartolazzi A, Nardis S, Paolesse R, Martinelli E, Di Natale C. Investigation of VOCs associated with different characteristics of breast cancer cells. Sci Rep 2015; 5:13246. [PMID: 26304457 PMCID: PMC4548242 DOI: 10.1038/srep13246] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/02/2015] [Indexed: 12/23/2022] Open
Abstract
The efficacy of breath volatile organic compounds (VOCs) analysis for the screening of patients bearing breast cancer lesions has been demonstrated by using gas chromatography and artificial olfactory systems. On the other hand, in-vitro studies suggest that VOCs detection could also give important indications regarding molecular and tumorigenic characteristics of tumor cells. Aim of this study was to analyze VOCs in the headspace of breast cancer cell lines in order to ascertain the potentiality of VOCs signatures in giving information about these cells and set-up a new sensor system able to detect breast tumor-associated VOCs. We identified by Gas Chromatography-Mass Spectrometry analysis a VOCs signature that discriminates breast cancer cells for: i) transformed condition; ii) cell doubling time (CDT); iii) Estrogen and Progesterone Receptors (ER, PgR) expression, and HER2 overexpression. Moreover, the signals obtained from a temperature modulated metal oxide semiconductor gas sensor can be classified in order to recognize VOCs signatures associated with breast cancer cells, CDT and ER expression. Our results demonstrate that VOCs analysis could give clinically relevant information about proliferative and molecular features of breast cancer cells and pose the basis for the optimization of a low-cost diagnostic device to be used for tumors characterization.
Collapse
Affiliation(s)
- Luca Lavra
- Labotatory of Biomedical Research "Fondazione Niccolò Cusano per la Ricerca Medico-Scientifica", Niccolò Cusano University, Rome, Italy
| | - Alexandro Catini
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Alessandra Ulivieri
- Labotatory of Biomedical Research "Fondazione Niccolò Cusano per la Ricerca Medico-Scientifica", Niccolò Cusano University, Rome, Italy
| | - Rosamaria Capuano
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Leila Baghernajad Salehi
- Labotatory of Biomedical Research "Fondazione Niccolò Cusano per la Ricerca Medico-Scientifica", Niccolò Cusano University, Rome, Italy
| | - Salvatore Sciacchitano
- Labotatory of Biomedical Research "Fondazione Niccolò Cusano per la Ricerca Medico-Scientifica", Niccolò Cusano University, Rome, Italy.,Department of Clinical and Molecular Medicine, University of Rome "Sapienza", Rome, Italy
| | - Armando Bartolazzi
- Department of Pathology, Universitary Hospital Sant'Andrea, Rome, Italy.,Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Hospital, Stockholm, Sweden
| | - Sara Nardis
- Department of Chemical science and technology, University of Rome Tor Vergata, Via di Tor Vergata, 00133 Rome, Italy
| | - Roberto Paolesse
- Department of Chemical science and technology, University of Rome Tor Vergata, Via di Tor Vergata, 00133 Rome, Italy
| | - Eugenio Martinelli
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| |
Collapse
|
9
|
Roine A, Saviauk T, Kumpulainen P, Karjalainen M, Tuokko A, Aittoniemi J, Vuento R, Lekkala J, Lehtimäki T, Tammela TL, Oksala NKJ. Rapid and accurate detection of urinary pathogens by mobile IMS-based electronic nose: a proof-of-principle study. PLoS One 2014; 9:e114279. [PMID: 25526592 PMCID: PMC4272258 DOI: 10.1371/journal.pone.0114279] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/08/2014] [Indexed: 01/20/2023] Open
Abstract
Urinary tract infection (UTI) is a common disease with significant morbidity and economic burden, accounting for a significant part of the workload in clinical microbiology laboratories. Current clinical chemisty point-of-care diagnostics rely on imperfect dipstick analysis which only provides indirect and insensitive evidence of urinary bacterial pathogens. An electronic nose (eNose) is a handheld device mimicking mammalian olfaction that potentially offers affordable and rapid analysis of samples without preparation at athmospheric pressure. In this study we demonstrate the applicability of ion mobility spectrometry (IMS) –based eNose to discriminate the most common UTI pathogens from gaseous headspace of culture plates rapidly and without sample preparation. We gathered a total of 101 culture samples containing four most common UTI bacteries: E. coli, S. saprophyticus, E. faecalis, Klebsiella spp and sterile culture plates. The samples were analyzed using ChemPro 100i device, consisting of IMS cell and six semiconductor sensors. Data analysis was conducted by linear discriminant analysis (LDA) and logistic regression (LR). The results were validated by leave-one-out and 5-fold cross validation analysis. In discrimination of sterile and bacterial samples sensitivity of 95% and specificity of 97% were achieved. The bacterial species were identified with sensitivity of 95% and specificity of 96% using eNose as compared to urine bacterial cultures. In conclusion: These findings strongly demonstrate the ability of our eNose to discriminate bacterial cultures and provides a proof of principle to use this method in urinanalysis of UTI.
Collapse
Affiliation(s)
- Antti Roine
- School of Medicine, University of Tampere, Tampere, Finland
- * E-mail:
| | - Taavi Saviauk
- School of Medicine, University of Tampere, Tampere, Finland
| | - Pekka Kumpulainen
- Department of Automation Science and Engineering, Tampere University of Technology, Tampere, Finland
| | - Markus Karjalainen
- Department of Automation Science and Engineering, Tampere University of Technology, Tampere, Finland
| | - Antti Tuokko
- School of Medicine, University of Tampere, Tampere, Finland
| | - Janne Aittoniemi
- Department of Clinical Microbiology, Fimlab Laboratories, Tampere, Finland
| | - Risto Vuento
- Department of Clinical Microbiology, Fimlab Laboratories, Tampere, Finland
| | - Jukka Lekkala
- Department of Automation Science and Engineering, Tampere University of Technology, Tampere, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and University of Tampere, School of Medicine, Tampere, Finland
| | - Teuvo L. Tammela
- Department of Surgery, School of Medicine, University of Tampere and Department of Urology, Tampere University Hospital, Tampere, Finland
| | - Niku K. J. Oksala
- Department of Surgery, School of Medicine, University of Tampere and Department of Vascular Surgery, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
10
|
Arasaradnam RP, Covington JA, Harmston C, Nwokolo CU. Review article: next generation diagnostic modalities in gastroenterology--gas phase volatile compound biomarker detection. Aliment Pharmacol Ther 2014; 39:780-9. [PMID: 24612215 DOI: 10.1111/apt.12657] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 10/08/2013] [Accepted: 01/23/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND The detection of airborne gas phase biomarkers that emanate from biological samples like urine, breath and faeces may herald a new age of non-invasive diagnostics. These biomarkers may reflect status in health and disease and can be detected by humans and other animals, to some extent, but far more consistently with instruments. The continued advancement in micro and nanotechnology has produced a range of compact and sophisticated gas analysis sensors and sensor systems, focussed primarily towards environmental and security applications. These instruments are now increasingly adapted for use in clinical testing and with the discovery of new gas volatile compound biomarkers, lead naturally to a new era of non-invasive diagnostics. AIM To review current sensor instruments like the electronic nose (e-nose) and ion mobility spectroscopy (IMS), existing technology like gas chromatography-mass spectroscopy (GC-MS) and their application in the detection of gas phase volatile compound biomarkers in medicine - focussing on gastroenterology. METHODS A systematic search on Medline and Pubmed databases was performed to identify articles relevant to gas and volatile organic compounds. RESULTS E-nose and IMS instruments achieve sensitivities and specificities ranging from 75 to 92% in differentiating between inflammatory bowel disease, bile acid diarrhoea and colon cancer from controls. For pulmonary disease, the sensitivities and specificities exceed 90% in differentiating between pulmonary malignancy, pneumonia and obstructive airways disease. These sensitivity levels also hold true for diabetes (92%) and bladder cancer (90%) when GC-MS is combined with an e-nose. CONCLUSIONS The accurate reproducible sensing of volatile organic compounds (VOCs) using portable near-patient devices is a goal within reach for today's clinicians.
Collapse
Affiliation(s)
- R P Arasaradnam
- Clinical Sciences Research Institute, University of Warwick, Coventry, UK; Department of Gastroenterology, University Hospital Coventry & Warwickshire, Coventry, UK
| | | | | | | |
Collapse
|
11
|
Asimakopoulos AD, Del Fabbro D, Miano R, Santonico M, Capuano R, Pennazza G, D'Amico A, Finazzi-Agrò E. Prostate cancer diagnosis through electronic nose in the urine headspace setting: a pilot study. Prostate Cancer Prostatic Dis 2014; 17:206-11. [PMID: 24686772 DOI: 10.1038/pcan.2014.11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/15/2014] [Accepted: 02/09/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND To evaluate the efficacy of prostate cancer (PCa) detection by the electronic nose (EN) on human urine samples. METHODS Urine samples were obtained from candidates of prostate biopsy (PB). Exclusion criteria were a history of urothelial carcinoma or other malignant disease, urine infection, fasting for <12 h before PB or ingestion of alcohol or foods that might alter the urine smell in the last 24 h. The initial part of the voided urine and the midstream were collected separately in two sterile containers. Both samples were analyzed by the EN immediately after the collection. All patients underwent a standard transperineal, transrectal-ultrasound-guided PB. The pathological results were compared with the outcomes of the EN. Sensitivity and specificity of EN were assessed. RESULTS Forty-one men were included in the study. Fourteen out of the 41 patients were positive for PCa. Midstream urine did not correlate significantly neither with a positive nor with a negative PB. Instead, significantly different results on the initial part of the urine stream between positive and negative PBs were obtained. The EN correctly recognized 10 out of the 14 cases (that is, sensitivity 71.4% (confidence interval (CI) 42-92%)) of PCa while four were false negatives. Moreover, the device recognized as negative 25 out of the 27 (that is, specificity 92.6% (CI 76-99%)) samples of negative PBs, with only two false positives. CONCLUSIONS We believe this is the first demonstration of an olfactory imprinting of the initial part of the urine stream in patients with PCa that was revealed by an EN, with high specificity.
Collapse
Affiliation(s)
- A D Asimakopoulos
- UOC of Urology, Department of Surgery, University of Rome Tor Vergata-Policlinico Casilino, Rome, Italy
| | - D Del Fabbro
- UOC of Urology, Department of Surgery, University of Tor Vergata, Policlinico Tor Vergata, Rome, Italy
| | - R Miano
- UOC of Urology, Department of Surgery, University of Tor Vergata, Policlinico Tor Vergata, Rome, Italy
| | - M Santonico
- Center for Integrated Research-CIR, Unit of Electronics for Sensor Systems, Università Campus Bio-Medico, Rome, Italy
| | - R Capuano
- Department of Electronic Engineering, University of Tor Vergata, Rome, Italy
| | - G Pennazza
- Center for Integrated Research-CIR, Unit of Electronics for Sensor Systems, Università Campus Bio-Medico, Rome, Italy
| | - A D'Amico
- Department of Electronic Engineering, University of Tor Vergata, Rome, Italy
| | - E Finazzi-Agrò
- UOC of Urology, Department of Surgery, University of Tor Vergata, Policlinico Tor Vergata, Rome, Italy
| |
Collapse
|
12
|
Roine A, Veskimäe E, Tuokko A, Kumpulainen P, Koskimäki J, Keinänen TA, Häkkinen MR, Vepsäläinen J, Paavonen T, Lekkala J, Lehtimäki T, Tammela TL, Oksala NKJ. Detection of prostate cancer by an electronic nose: a proof of principle study. J Urol 2014; 192:230-4. [PMID: 24582536 DOI: 10.1016/j.juro.2014.01.113] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2014] [Indexed: 12/26/2022]
Abstract
PURPOSE We evaluate the ability of an electronic nose to discriminate prostate cancer from benign prostatic hyperplasia using urine headspace, potentially offering a clinically applicable noninvasive and rapid diagnostic method. MATERIALS AND METHODS The ChemPro® 100-eNose was used to discriminate prostate cancer from benign prostatic hyperplasia using urine sample headspace. Its performance was tested with 50 patients with confirmed prostate cancer and 24 samples from 15 patients with benign prostatic hyperplasia (15 patients provided urine preoperatively and 9 patients provided samples 3 months postoperatively) scheduled to undergo robotic assisted laparoscopic radical prostatectomy or transurethral resection of prostate, respectively. The patients provided urine sample preoperatively and those with benign prostatic hyperplasia also provided samples 3 months postoperatively to be used as a pooled control sample population. A discrimination classifier was identified for eNose and subsequently, sensitivity and specificity values were determined. Leave-one-out cross-validation was performed. RESULTS Using leave-one-out cross-validation the eNose reached a sensitivity of 78%, a specificity of 67% and AUC 0.77. CONCLUSIONS The electronic nose is capable of rapidly and noninvasively discriminating prostate cancer and benign prostatic hyperplasia using urine headspace in patients undergoing surgery.
Collapse
Affiliation(s)
- Antti Roine
- School of Medicine, University of Tampere, Tampere, Finland.
| | - Erik Veskimäe
- Department of Surgery, School of Medicine, University of Tampere and Department of Urology, Tampere University Hospital, Tampere, Finland
| | - Antti Tuokko
- School of Medicine, University of Tampere, Tampere, Finland
| | - Pekka Kumpulainen
- Department of Automation Science and Engineering, Tampere University of Technology, Tampere, Finland
| | - Juha Koskimäki
- Department of Surgery, School of Medicine, University of Tampere and Department of Urology, Tampere University Hospital, Tampere, Finland
| | - Tuomo A Keinänen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Merja R Häkkinen
- School of Pharmacy, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - Jouko Vepsäläinen
- School of Pharmacy, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - Timo Paavonen
- Department of Pathology, School of Medicine, University of Tampere and Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Jukka Lekkala
- Department of Automation Science and Engineering, Tampere University of Technology, Tampere, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and University of Tampere, School of Medicine, Tampere, Finland
| | - Teuvo L Tammela
- Department of Surgery, School of Medicine, University of Tampere and Department of Urology, Tampere University Hospital, Tampere, Finland
| | - Niku K J Oksala
- Department of Surgery, School of Medicine, University of Tampere and Department of Vascular Surgery, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
13
|
Santonico M, Pennazza G, Asimakopoulos AD, Del Fabbro D, Miano R, Capuano R, Finazzi-Agrò E, D’Amico A. Chemical Sensors for Prostate Cancer Detection Oriented to Non-invasive Approach. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.proeng.2014.11.672] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|