1
|
Cortés-Jofré M, Rueda-Etxebarria M, Orillard E, Jimenez Tejero E, Rueda JR. Therapeutic vaccines for advanced non-small cell lung cancer. Cochrane Database Syst Rev 2024; 3:CD013377. [PMID: 38470132 PMCID: PMC10929364 DOI: 10.1002/14651858.cd013377.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
BACKGROUND New strategies in immunotherapy with specific antigens that trigger an anti-tumour immune response in people with lung cancer open the possibility of developing therapeutic vaccines aimed at boosting the adaptive immune response against cancer cells. OBJECTIVES To evaluate the effectiveness and safety of different types of therapeutic vaccines for people with advanced non-small cell lung cancer. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, Wanfang Data, and China Journal Net (CNKI) up to 22 August 2023. SELECTION CRITERIA We included parallel-group, randomised controlled trials evaluating a therapeutic cancer vaccine, alone or in combination with other treatments, in adults (> 18 years) with advanced non-small cell lung cancer (NSCLC), whatever the line of treatment. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. Our primary outcomes were overall survival, progression-free survival, and serious adverse events; secondary outcomes were three- and five-year survival rates and health-related quality of life. MAIN RESULTS We included 10 studies with 2177 participants. The outcome analyses included only 2045 participants (1401 men and 644 women). The certainty of the evidence varied by vaccine and outcome, and ranged from moderate to very low. We report only the results for primary outcomes here. TG4010 The addition of the vector-based vaccine, TG4010, to chemotherapy, compared with chemotherapy alone in first-line treatment, may result in little to no difference in overall survival (hazard ratio (HR) 0.83, 95% confidence interval (CI) 0.65 to 1.05; 2 studies, 370 participants; low-certainty evidence). It may increase progression-free survival slightly (HR 0.74, 95% CI 0.55 to 0.99; 1 study, 222 participants; low-certainty evidence). It may result in little to no difference in the proportion of participants with at least one serious treatment-related adverse event, but the evidence is very uncertain (risk ratio (RR) 0.70, 95% CI 0.23 to 2.19; 2 studies, 362 participants; very low-certainty evidence). Epidermal growth factor vaccine Epidermal growth factor vaccine, compared to best supportive care as switch maintenance treatment after first-line chemotherapy, may result in little to no difference in overall survival (HR 0.82, 95% CI 0.66 to 1.02; 1 study, 378 participants; low-certainty evidence), and in the proportion of participants with at least one serious treatment-related adverse event (RR 1.32, 95% CI 0.88 to 1.98; 2 studies, 458 participants; low-certainty evidence). hTERT (vx-001) The hTERT (vx-001) vaccine compared to placebo as maintenance treatment after first-line chemotherapy may result in little to no difference in overall survival (HR 0.97, 95% CI 0.70 to 1.34; 1 study, 190 participants). Racotumomab Racotumomab compared to placebo as a switch maintenance treatment post-chemotherapy was assessed in one study with 176 participants. It may increase overall survival (HR 0.63, 95% CI 0.46 to 0.87). It may make little to no difference in progression-free survival (HR 0.73, 95% CI 0.53 to 1.00) and in the proportion of people with at least one serious treatment-related adverse event (RR 1.03, 95% CI 0.15 to 7.18). Racotumomab versus docetaxel as switch maintenance therapy post-chemotherapy was assessed in one study with 145 participants. The study did not report hazard rates on overall survival or progression-free survival time, but the difference in median survival times was very small - less than one month. Racotumomab may result in little to no difference in the proportion of people with at least one serious treatment-related adverse event compared with docetaxel (RR 0.89, 95% CI 0.44 to 1.83). Personalised peptide vaccine Personalised peptide vaccine plus docetaxel compared to docetaxel plus placebo post-chemotherapy treatment may result in little to no difference in overall survival (HR 0.80, 95% CI 0.42 to 1.52) and progression-free survival (HR 0.78, 95% CI 0.43 to 1.42). OSE2101 The OSE2101 vaccine compared with chemotherapy, after chemotherapy or immunotherapy, was assessed in one study with 219 participants. It may result in little to no difference in overall survival (HR 0.86, 95% CI 0.62 to 1.19). It may result in a small difference in the proportion of people with at least one serious treatment-related adverse event (RR 0.95, 95% CI 0.91 to 0.99). SRL172 The SRL172 vaccine of killed Mycobacterium vaccae, added to chemotherapy, compared to chemotherapy alone, may result in no difference in overall survival, and may increase the proportion of people with at least one serious treatment-related adverse event (RR 2.07, 95% CI 1.76 to 2.43; 351 participants). AUTHORS' CONCLUSIONS Adding a vaccine resulted in no differences in overall survival, except for racotumomab, which showed some improvement compared to placebo, but the difference in median survival time was very small (1.4 months) and the study only included 176 participants. Regarding progression-free survival, we observed no differences between the compared treatments, except for TG4010, which may increase progression-free survival slightly. There were no differences between the compared treatments in serious treatment-related adverse events, except for SRL172 (killed Mycobacterium vaccae) added to chemotherapy, which was associated with an increase in the proportion of participants with at least one serious treatment-related adverse event, and OSE2101, which may decrease slightly the proportion of people having at least one serious treatment-related adverse event. These conclusions should be interpreted cautiously, as the very low- to moderate-certainty evidence prevents drawing solid conclusions: many vaccines were evaluated in a single study with small numbers of participants and events.
Collapse
Affiliation(s)
- Marcela Cortés-Jofré
- Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Mikel Rueda-Etxebarria
- Research in Sciences of dissemination and implementation in health services, Biobizkaia Health Research Institute, Barakaldo, Spain
| | | | - Elena Jimenez Tejero
- Independent Cochrane review author, Madrid, Spain
- Faculty of Medicine, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - José-Ramón Rueda
- Department of Preventive Medicine and Public Health, Faculty of Medicine and Nursing. University of the Basque Country, Leioa, Spain
| |
Collapse
|
2
|
Zhang Y, Zhan L, Li J, Jiang X, Yin L. Insights into N6-methyladenosine (m6A) modification of noncoding RNA in tumor microenvironment. Aging (Albany NY) 2023; 15:3857-3889. [PMID: 37178254 PMCID: PMC10449301 DOI: 10.18632/aging.204679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/15/2023] [Indexed: 05/15/2023]
Abstract
N6-methyladenosine (m6A) is the most abundant RNA modification in eukaryotes, and it participates in the regulation of pathophysiological processes in various diseases, including malignant tumors, by regulating the expression and function of both coding and non-coding RNAs (ncRNAs). More and more studies demonstrated that m6A modification regulates the production, stability, and degradation of ncRNAs and that ncRNAs also regulate the expression of m6A-related proteins. Tumor microenvironment (TME) refers to the internal and external environment of tumor cells, which is composed of numerous tumor stromal cells, immune cells, immune factors, and inflammatory factors that are closely related to tumors occurrence and development. Recent studies have suggested that crosstalk between m6A modifications and ncRNAs plays an important role in the biological regulation of TME. In this review, we summarized and analyzed the effects of m6A modification-associated ncRNAs on TME from various perspectives, including tumor proliferation, angiogenesis, invasion and metastasis, and immune escape. Herein, we showed that m6A-related ncRNAs can not only be expected to become detection markers of tumor tissue samples, but can also be wrapped into exosomes and secreted into body fluids, thus exhibiting potential as markers for liquid biopsy. This review provides a deeper understanding of the relationship between m6A-related ncRNAs and TME, which is of great significance to the development of a new strategy for precise tumor therapy.
Collapse
Affiliation(s)
- YanJun Zhang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China
| | - Lijuan Zhan
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China
| | - Jing Li
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China
| | - Xue Jiang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China
| | - Li Yin
- Department of Biopharmaceutics, Yulin Normal University, Guangxi, Yulin 537000, China
- Bioengineering and Technology Center for Native Medicinal Resources Development, Yulin Normal University, Yulin 537000, China
| |
Collapse
|
3
|
Padinharayil H, Alappat RR, Joy LM, Anilkumar KV, Wilson CM, George A, Valsala Gopalakrishnan A, Madhyastha H, Ramesh T, Sathiyamoorthi E, Lee J, Ganesan R. Advances in the Lung Cancer Immunotherapy Approaches. Vaccines (Basel) 2022; 10:1963. [PMID: 36423060 PMCID: PMC9693102 DOI: 10.3390/vaccines10111963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 09/19/2023] Open
Abstract
Despite the progress in the comprehension of LC progression, risk, immunologic control, and treatment choices, it is still the primary cause of cancer-related death. LC cells possess a very low and heterogeneous antigenicity, which allows them to passively evade the anticancer defense of the immune system by educating cytotoxic lymphocytes (CTLs), tumor-infiltrating lymphocytes (TILs), regulatory T cells (Treg), immune checkpoint inhibitors (ICIs), and myeloid-derived suppressor cells (MDSCs). Though ICIs are an important candidate in first-line therapy, consolidation therapy, adjuvant therapy, and other combination therapies involving traditional therapies, the need for new predictive immunotherapy biomarkers remains. Furthermore, ICI-induced resistance after an initial response makes it vital to seek and exploit new targets to benefit greatly from immunotherapy. As ICIs, tumor mutation burden (TMB), and microsatellite instability (MSI) are not ideal LC predictive markers, a multi-parameter analysis of the immune system considering tumor, stroma, and beyond can be the future-oriented predictive marker. The optimal patient selection with a proper adjuvant agent in immunotherapy approaches needs to be still revised. Here, we summarize advances in LC immunotherapy approaches with their clinical and preclinical trials considering cancer models and vaccines and the potential of employing immunology to predict immunotherapy effectiveness in cancer patients and address the viewpoints on future directions. We conclude that the field of lung cancer therapeutics can benefit from the use of combination strategies but with comprehension of their limitations and improvements.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Reema Rose Alappat
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Liji Maria Joy
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Kavya V. Anilkumar
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Cornelia M. Wilson
- Life Sciences Industry Liaison Lab, School of Psychology and Life Sciences, Canterbury Christ Church University, Sandwich CT13 9ND, UK
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | | | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24253, Republic of Korea
| |
Collapse
|
4
|
Wang JK, Zhao BS, Wang M, Liu CY, Li YQ, Ma QT, Li PF, Wang TS, Wang CG, Zhou YM. Anti-tumor and Phenotypic Regulation Effect of Matrine on Dendritic Cells through Regulating TLRs Pathway. Chin J Integr Med 2020; 27:520-526. [PMID: 33170941 DOI: 10.1007/s11655-020-3433-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate the effects of matrine on antigen presentation of dendritic cells (DCs), and to explore the pharmacological mechanism of matrine on anti-tumor effect. METHODS Different concentrations (0, 1, 2, 4, 8 and 16 µ g/mL) of matrine were co-cultured with DCs, the harvested DCs were co-cultured with antigens of Lewis lung cancer (LLC) cells, and then DCs and T cells were co-cultured to produce DCs-activated killer (DAK) cells, which have significant tumor-killing activity. The expression of cytokines, mRNA and protein of toll-like receptors (TLRs) in DCs were detected by enzyme linked immunosobent assay, polymerase chain reaction and Western blot, respectively. And the killing effect of DAK were measured by MTT assay. RESULTS Matrine significantly increased the mRNA expression of TLR7, TLR8, myeloid differentiation factor 88 (MyD88), tumor necrosis factor receptor-associated factor 6 (TRAF-6) and I κ B kinase (IKK), as well as the protein expression of TLR7 and TLR8, and up-regulated the levels of interleukin-12 (IL-12), IL-6 and tumor necrosis factor-α (TNF-α), meanwhile, it also increased the expressions of MHC-II, CD54, CD80 and CD86 in DCs. DCs-activated effector T cells had significant tumor-killing activity. When the concentration of matrine was more than 4 µg/mL, all indices had significant difference (P<0.01 or P<0.05). CONCLUSION Matrine plays an anti-tumor role by regulating TLRs signal transduction pathway, promoting the secretion of inflammatory cytokines and enhancing immune function.
Collapse
Affiliation(s)
- Jing-Kang Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Bao-Sheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Min Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chen-Yue Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ya-Qi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Quan-Tao Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Peng-Fei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tie-Shan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chun-Guo Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yong-Ming Zhou
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
5
|
Das B, Senapati S. Immunological and functional aspects of MAGEA3 cancer/testis antigen. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 125:121-147. [PMID: 33931137 DOI: 10.1016/bs.apcsb.2020.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Identification of ectopic gene activation in cancer cells serves as a basis for both gene signature-guided tumor targeting and unearthing of oncogenic mechanisms to expand the understanding of tumor biology/oncogenic process. Proteins expressed only in germ cells of testis and/or placenta (immunoprivileged organs) and in malignancies are called cancer testis antigens; they are antigenic because of the lack of antigen presentation by those specific cell types (germ cells), which limits the exposure of the proteins to the immune cells. Since the Cancer Testis Antigens (CTAs) are immunogenic and expressed in a wide variety of cancer types, CT antigens have become interesting target for immunotherapy against cancer. Among CT antigens MAGEA family is reported to have 12 members (MAGEA1 to MAGEA12). The current review highlights the studies on MAGEA3 which is a CT antigen and reported in almost all types of cancer. MAGEA3 is well tried for cancer immunotherapy. Recent advances on its functional and immunological aspect warranted much deliberation on effective therapeutic approach, thus making it a more interesting target for cancer therapy.
Collapse
Affiliation(s)
- Biswajit Das
- Tumor Microenvironment and Animal Models Lab, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Lab, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| |
Collapse
|
6
|
Yan BD, Cong XF, Zhao SS, Ren M, Liu ZL, Li Z, Chen C, Yang L. Efficacy and Safety of Antigen-specific Immunotherapy in the Treatment of Patients with Non-small-cell Lung Cancer: A Systematic Review and Meta-analysis. Curr Cancer Drug Targets 2020; 19:199-209. [PMID: 29714142 DOI: 10.2174/1568009618666180430124738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 02/05/2018] [Accepted: 04/03/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVE We performed this systematic review and meta-analysis to assess the efficacy and safety of antigen-specific immunotherapy (Belagenpumatucel-L, MAGE-A3, L-BLP25, and TG4010) in the treatment of patients with non-small-cell lung cancer (NSCLC). METHODS A comprehensive literature search on PubMed, Embase, and Web of Science was conducted. Eligible studies were clinical trials of patients with NSCLC who received the antigenspecific immunotherapy. Pooled hazard ratios (HRs) with 95% confidence intervals (95%CIs) were calculated for overall survival (OS), progression-free survival (PFS). Pooled risk ratios (RRs) were calculated for overall response rate (ORR) and the incidence of adverse events. RESULTS In total, six randomized controlled trials (RCTs) with 4,806 patients were included. Pooled results showed that, antigen-specific immunotherapy did not significantly prolong OS (HR=0.92, 95%CI: 0.83, 1.01; P=0.087) and PFS (HR=0.93, 95%CI: 0.85, 1.01; P=0.088), but improved ORR (RR=1.72, 95%CI: 1.11, 2.68; P=0.016). Subgroup analysis based on treatment agents showed that, tecemotide was associated with a significant improvement in OS (HR=0.85, 95%CI: 0.74, 0.99; P=0.03) and PFS (HR=0.70, 95%CI: 0.49, 0.99, P=0.044); TG4010 was associated with an improvement in PFS (HR=0.87, 95%CI: 0.75, 1.00, P=0.058). In addition, NSCLC patients who were treated with antigen-specific immunotherapy exhibited a significantly higher incidence of adverse events than those treated with other treatments (RR=1.11, 95%CI: 1.00, 1.24; P=0.046). CONCLUSION Our study demonstrated the clinical survival benefits of tecemotide and TG4010 in the treatment of NSCLC. However, these evidence might be limited by potential biases. Therefore, further well-conducted, large-scale RCTs are needed to verify our findings.
Collapse
Affiliation(s)
- Bing-Di Yan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Xiao-Feng Cong
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Sha-Sha Zhao
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Meng Ren
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Zi-Ling Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Zhi Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Chen Chen
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Lei Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Cortés‐Jofré M, Uranga R, Torres Pombert A, Arango Prado MDC, Caballero Aguirrechu I, Pacheco C, Ortiz Reyes RM, Chuecas F, Mas Bermejo PI. Therapeutic vaccines for advanced non‐small cell lung cancer. Cochrane Database Syst Rev 2019; 2019:CD013377. [PMCID: PMC6673723 DOI: 10.1002/14651858.cd013377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
This is a protocol for a Cochrane Review (Intervention). The objectives are as follows: To evaluate the effectiveness and safety of therapeutic vaccines for people with advanced non‐small cell lung cancer (non‐irradiatable stage IIIB and stage IV NSCLC) who have either not received treatment, or have received treatment with chemotherapy, or radiotherapy, or both.
Collapse
Affiliation(s)
| | - Rolando Uranga
- Centro Nacional Coordinador de Ensayos Clínicos (CENCEC)Manejo y Procesamiento de DatosAve 5ta A e/60 y 62Miramar, PlayaCuba11300
| | - Ania Torres Pombert
- Centro Nacional Coordinador de Ensayos Clínicos (CENCEC)Head of Scientific Information Management Unit5th avenue E 60th Street, 2nd Floor. MiramarHavanaCuba11300
| | - Maria del Carmen Arango Prado
- Instituto Nacional de Oncología y Radiobiología (INOR)Departamento de Investigaciones Básicas29 and F, VedadoLa HabanaCuba10400
| | | | - Cecilia Pacheco
- Clinica Alemana, Universidad del DesarrolloCentro de Información MédicaAv. Manquehue 1499 ‐ VitacuraSantiagoChile6750567
| | - Rosa Maria Ortiz Reyes
- Instituto Nacional de Oncología y Radiobiología (INOR)Departmento de Investigaciones Clinicas29 y F . VedadoLa HabanaCuba10400
| | - Fernando Chuecas
- Catholic UniversityFaculty of MedicineAlonso de Ribera 2850ConcepciónChile4090541
| | - Pedro Inocente Mas Bermejo
- Tropical Medicine Institute "Pedro Kouri"Department of Epidemiology and Public HealthAutopista del Mediodia km 6La LisaCubaMarianao 13
| |
Collapse
|
8
|
Immunotherapy for cervical cancer: Can it do another lung cancer? Curr Probl Cancer 2018; 42:148-160. [PMID: 29500076 DOI: 10.1016/j.currproblcancer.2017.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/10/2017] [Indexed: 02/04/2023]
Abstract
Cervical cancer, although preventable, is still the second most common cancer among women worldwide. In developing countries like India, where screening for cervical cancer is virtually absent, most women seek treatment only at advanced stages of the disease. Although standard treatment is curative in more than 90% of women during the early stages, for stage IIIb and above this rate drops to 50% or less. Hence, novel therapeutic adjuvants are required to improve survival at advanced stages. Lung cancer has shown the way forward with the use of Immunotherapeutic interventions as standard line of treatment in advanced stages. In this review, we provide an overview of mechanisms of immune evasion, strategies that can be employed to boost the immune system in order to improve the overall survival of the patients and summarize briefly the clinical trials that have been completed or that are underway to bring therapeutic vaccines for cervical cancer to the clinics.
Collapse
|
9
|
Jia H, Truica CI, Wang B, Wang Y, Ren X, Harvey HA, Song J, Yang JM. Immunotherapy for triple-negative breast cancer: Existing challenges and exciting prospects. Drug Resist Updat 2017; 32:1-15. [PMID: 29145974 DOI: 10.1016/j.drup.2017.07.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 12/21/2022]
Abstract
Patients with breast tumors that do not express the estrogen receptor, the progesterone receptor, nor Her-2/neu are hence termed "triple negatives", and generally have a poor prognosis, with high rates of systemic recurrence and refractoriness to conventional therapy regardless of the choice of adjuvant treatment. Thus, more effective therapeutic options are sorely needed for triple-negative breast cancer (TNBC), which occurs in approximately 20% of diagnosed breast cancers. In recent years, exploiting intrinsic mechanisms of the host immune system to eradicate cancer cells has achieved impressive success, and the advances in immunotherapy have yielded potential new therapeutic strategies for the treatment of this devastating subtype of breast cancer. It is anticipated that the responses initiated by immunotherapeutic interventions will explicitly target and annihilate tumor cells, while at the same time spare normal cells. Various immunotherapeutic approaches have been already developed and tested, which include the blockade of immune checkpoints using neutralizing or blocking antibodies, induction of cytotoxic T lymphocytes (CTLs), adoptive cell transfer-based therapy, and modulation of the tumor microenvironment to enhance the activity of CTLs. One of the most important areas of breast cancer research today is understanding the immune features and profiles of TNBC and devising novel immune-modulatory strategies to tackling TNBC, a subtype of breast cancer notorious for its poor prognosis and its imperviousness to conventional treatments. On the optimal side, one can anticipate that novel, effective, and personalized immunotherapy for TNBC will soon achieve more success and impact clinical treatment of this disease which afflicts approximately 20% of patients with breast cancer. In the present review, we highlight the current progress and encouraging developments in cancer immunotherapy, with a goal to discuss the challenges and to provide future perspectives on how to exploit a variety of new immunotherapeutic approaches including checkpoint inhibitors and neoadjuvant immunotherapy for the treatment of patients with TNBC.
Collapse
Affiliation(s)
- Hongyan Jia
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 03001, China.
| | - Cristina I Truica
- Department of Medicine, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Bin Wang
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 03001, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, 03001, China
| | - Xingcong Ren
- Department of Pharmacology, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Harold A Harvey
- Department of Medicine, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jianxun Song
- Department of Microbiology and Immunology, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jin-Ming Yang
- Department of Pharmacology, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
10
|
Global analysis of chromosome 1 genes among patients with lung adenocarcinoma, squamous carcinoma, large-cell carcinoma, small-cell carcinoma, or non-cancer. Cancer Metastasis Rev 2016; 34:249-64. [PMID: 25937073 DOI: 10.1007/s10555-015-9558-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The present study aimed at investigating genetic variations, specific signal pathways, or biological processes of chromosome 1 genes between subtypes and stages of lung cancer and prediction of selected targeting genes for patient survival rate. About 537 patients with lung adenocarcinoma (ADC), 140 with lung squamous carcinoma (SCC), 9 with lung large-cell carcinoma (LCC), 56 with small-cell lung cancer (SCLC), and 590 without caner were integrated from 16 databases and analyzed in the present study. Three (ASPM, CDC20, KIAA1799) or 28 genes significantly up- or down-expressed in four subtypes of lung cancer. The activated cell division and down-regulated immune responses were identified in patients with lung cancer. Keratinocyte development associated genes S100 and SPRR families dominantly up-expressed in SCC and AKT3 and NRAS in SCLC. Subtype-specific genes of ADC, SCC, LCC, or SCLC were also identified. C1orf106, CAPN8, CDC20, COL11A1, CRABP2, and NBPF9 up-expressed at four stages of ADC. Fifty six related with keratinocytes or potassium channels up-expressed in three stages of SCC. CDC20, IL10, ECM1, GABPB2, CRABP2, and COL11A1 significantly predicted the poor overall survival of ADC patients and S100A2 and TIMM17A in SCC patients. Our data indicate that a number of altered chromosome 1 genes have the subtype and stage specificities of lung cancer and can be considered as diagnostic and prognosis biomarkers.
Collapse
|
11
|
Khanna P, Blais N, Gaudreau PO, Corrales-Rodriguez L. Immunotherapy Comes of Age in Lung Cancer. Clin Lung Cancer 2016; 18:13-22. [PMID: 27461776 DOI: 10.1016/j.cllc.2016.06.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/07/2016] [Accepted: 06/13/2016] [Indexed: 11/25/2022]
Abstract
Lung carcinoma is the leading cause of death by cancer worldwide. When possible, surgery is the best treatment strategy for patients with non-small-cell lung cancer. However, even with curative-intent therapy, most patients will develop local or systemic recurrence and, ultimately, succumb to their disease. In recent years, evidence on the role of the antitumor activity of the immune system and the understanding of tumor immunosurveillance have resulted in the emergence of immunotherapy as a promising therapeutic approach in lung cancer. The main approaches are immune checkpoint inhibition, such as blockade of the cytotoxic T-lymphocyte antigen-4 and programmed cell death-1 receptors and the programmed cell death-1 ligand, and vaccine therapy, which elicits specific antitumor immunity against relevant tumor-associated antigens. We have reviewed recently reported results from clinical trials and the possible future role of vaccine therapy and immune checkpoint inhibition in the treatment of small cell lung cancer and non-small-cell lung cancer.
Collapse
Affiliation(s)
- Priyanka Khanna
- Centro de Investigación y Manejo del Cáncer (CIMCA), San Jose, Costa Rica
| | - Normand Blais
- Medical Oncology and Hematology, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Pierre-Olivier Gaudreau
- Medical Oncology and Hematology, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Luis Corrales-Rodriguez
- Medical Oncology, Centro de Investigación y Manejo del Cáncer (CIMCA), San Jose, Costa Rica.
| |
Collapse
|
12
|
Alomari AK, Cohen J, Vortmeyer AO, Chiang A, Gettinger S, Goldberg S, Kluger HM, Chiang VL. Possible Interaction of Anti-PD-1 Therapy with the Effects of Radiosurgery on Brain Metastases. Cancer Immunol Res 2016; 4:481-7. [PMID: 26994250 DOI: 10.1158/2326-6066.cir-15-0238] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/16/2016] [Indexed: 11/16/2022]
Abstract
Delayed radiation-induced vasculitic leukoencephalopathy related to stereotactic radiosurgery (SRS) of brain metastases has been reported to manifest clinically 9 to 18 months after treatment. Immune-modulating therapies have been introduced to treatment regimens for malignancies with metastatic predilection to the brain. The interaction of these systemic therapies with other modalities of treatment for brain metastases, namely, SRS, has not been fully characterized. We report two patients with metastatic malignancies to the brain who received SRS followed by immunotherapy with monoclonal antibodies (mAb) to programmed death 1 (PD-1). Both patients appeared to have early clinical and radiologic progression of their treated lesions, which was highly suspicious for tumor progression. Both patients underwent surgical resection of their lesions and the material was submitted for histopathologic examination. Pathologic examination in both cases showed predominantly radiation-induced changes characterized by reactive astrocytosis and vascular wall infiltration by T lymphocytes. The accelerated response to SRS in these two patients was temporally related to the initiation of immunotherapy. We propose a possible biologic interaction between SRS and the PD-1 mAbs. Additionally, awareness of this potential occurrence is critical for accurate interpretation and proper management of clinical and radiologic findings in these patients. Cancer Immunol Res; 4(6); 481-7. ©2016 AACR.
Collapse
Affiliation(s)
- Ahmed K Alomari
- Department of Pathology, Yale University, School of Medicine, New Haven, Connecticut.
| | - Justine Cohen
- Department of Medicine (Medical Oncology), Yale University, School of Medicine, New Haven, Connecticut
| | - Alexander O Vortmeyer
- Department of Pathology, Yale University, School of Medicine, New Haven, Connecticut
| | - Anne Chiang
- Department of Medicine (Medical Oncology), Yale University, School of Medicine, New Haven, Connecticut
| | - Scott Gettinger
- Department of Medicine (Medical Oncology), Yale University, School of Medicine, New Haven, Connecticut
| | - Sarah Goldberg
- Department of Medicine (Medical Oncology), Yale University, School of Medicine, New Haven, Connecticut
| | - Harriet M Kluger
- Department of Medicine (Medical Oncology), Yale University, School of Medicine, New Haven, Connecticut
| | - Veronica L Chiang
- Department of Neurosurgery, Yale University, School of Medicine, New Haven, Connecticut
| |
Collapse
|
13
|
Interleukin-7 and anti-programmed cell death 1 antibody have differing effects to reverse sepsis-induced immunosuppression. Shock 2016; 43:334-43. [PMID: 25565644 DOI: 10.1097/shk.0000000000000317] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sepsis remains a major cause of morbidity and mortality in most intensive care units. Protracted sepsis can evolve into a state of profound immunosuppression characterized by secondary infections, frequently with opportunistic-type pathogens. Immunoadjuvant therapy is currently being evaluated as a novel treatment for patients with sepsis. Two of the most promising immunoadjuvants are interleukin-7 (IL-7) and anti-programmed cell death 1 antibody (anti-PD-1). Both IL-7 and anti-PD-1 have been reported to boost host immunity and improve outcomes in patients with viral infections and cancer. The purpose of this study was to define the immunological mechanisms of action of IL-7 and anti-PD-1 in the two-hit sepsis model of cecal ligation and puncture followed by Candida albicans. In addition, we examined whether combined treatment with IL-7 and anti-PD-1 provided any additive beneficial effects in reversing immune dysfunction. The present findings demonstrated that IL-7 and anti-PD-1 had differing effects on innate and adaptive immune functions. Compared with anti-PD-1, IL-7 increased lymphocyte proliferation; expression of lymphocyte adhesion molecules, lymphocyte function-associated antigen 1, and very late antigen-4; interferon-γ production; and CD28 expression on splenic CD8 T cells. In contrast, anti-PD-1 seemed to have a greater effect on major histocompatibility complex class II expression on splenic macrophages and dendritic cells than IL-7. Combined treatment with IL-7 and anti-PD-1 produced additive effects on CD28 expression, lymphocyte proliferation, and splenic secretion of interferon-γ. In conclusion, the present study shows differences in immunomodulatory actions between IL-7 and anti-PD-1 and provides a potential rationale for combining IL-7 and anti-PD-1 in the therapy of sepsis.
Collapse
|
14
|
Daga A, Ansari A, Patel S, Mirza S, Rawal R, Umrania V. Current Drugs and Drug Targets in Non-Small Cell Lung Cancer: Limitations and Opportunities. Asian Pac J Cancer Prev 2015; 16:4147-56. [DOI: 10.7314/apjcp.2015.16.10.4147] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
15
|
Domagala-Kulawik J. The role of the immune system in non-small cell lung carcinoma and potential for therapeutic intervention. Transl Lung Cancer Res 2015; 4:177-90. [PMID: 25870800 DOI: 10.3978/j.issn.2218-6751.2015.01.11] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/21/2015] [Indexed: 12/27/2022]
Abstract
Over a hundred years after the first description of this disease, lung cancer represents one of the major challenges in oncology. Radical treatment cannot be introduced in more than 70% of cases and overall survival rate does not exceed 15%. The immunosurveillance of lung cancer may be effective in early oncogenesis but is inhibited in the course of developing a clinically detectable tumor. Very low and heterogonous antigenicity of lung cancer cells leads to passive escape from anti-cancer immune defense. The cytotoxic lymphocytes (CTLs) that play a main role in the anticancer response are actively suppressed in the tumor environment and following regulatory mechanisms inhibit the recognition of tumor antigens by antigen presenting cells. The population of regulatory T cells (Tregs) is augmented and the expression of transcription factor-Foxp3 is markedly increased on tumor cells and tumor infiltrating lymphocytes (TIL). It is accomplished by M2 macrophage polarization, the activity of myeloid derived suppressor cells (MDSCs) and a significantly elevated concentration of cytokines: transforming growth factor beta (TGFβ) and IL-10 in the tumor microenvironment. Very active suppression of immune protection is the predominant role of the programmed death 1 (PD-1)-PD-L1 pathway. The blockage of this pathway was found to be an effective treatment approach; therefore the monoclonal antibodies are being intensively investigated in lung cancer patients. Cytotoxic T lymphocyte antigen-4 (CTLA-4) is the molecule capable of inhibiting the activation signal. The antibody anti-CTLA-4 improves CTLs function in solid tumors and lung cancer patients may benefit from use of this agent. The second way in lung cancer immunotherapy is production of anti-cancer vaccines using recognized cancer antigens: MAGE-A3, membrane associated glycoprotein (MUC-1), and EGF. It was recently shown in ongoing clinical trials that combined therapies: immune- and chemotherapy, radiotherapy or targeted therapy seem to be effective. Immunotherapy in lung cancer has an individual character-there is a need to assess the patient's immune status prior to implementation of immunomodulating therapy.
Collapse
Affiliation(s)
- Joanna Domagala-Kulawik
- Department of Internal Diseases, Pneumonology and Allergology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
16
|
Wang M, Cao JX, Liu YS, Xu BL, Li D, Zhang XY, Li JL, Liu JL, Wang HB, Wang ZX. Evaluation of tumour vaccine immunotherapy for the treatment of advanced non-small cell lung cancer: a systematic meta-analysis. BMJ Open 2015; 5:e006321. [PMID: 25872936 PMCID: PMC4401843 DOI: 10.1136/bmjopen-2014-006321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Our meta-analysis performed a systematic evaluation on the therapeutic efficacy and safety of tumour vaccines for the treatment of advanced non-small cell lung cancer (NSCLC). DESIGN Systematic review and meta-analysis of randomised controlled trials (RCT). DATA SOURCES PubMed, the Cochrane Center Register of Controlled Trials, Science Direct and EMBASE were searched from January 1980 until January 2015. ELIGIBILITY CRITERIA FOR SELECTING STUDIES RCT were included; the control arm had to receive either placebo or chemotherapy or no treatment. MAIN OUTCOME MEASURES The quality of the data from individual papers was assessed for overall survival (OS), clinical response rate and side effects. RESULTS Overall, 11 RCT of advanced NSCLC with a total of 3986 patients were conducted for meta-analysis. The results showed that the vaccine arm significantly extended primary endpoint median overall survival compared with control group (p<0.00001) (HR 0.760; 95% CI 0.644 to 0.896; p=0.001). Three subgroup patients with tumour vaccine at 1-year, 2-year and 3-year survival rates also gained significant benefits compared with their corresponding control group (p=0.0004, 0.03 and 0.19, respectively). Besides, a significant improvement in median time to progression (TTP), median progression-free survival (PFS) and a trend of improvement in objective response rate were observed after tumour vaccine treatment (p=0.001, 0.005 and 0.05, respectively; median PFS HR 0.842; 95% CI 0.744 to 0.954; p=0.007). A few severe adverse effects occurred in the tumour vaccine group, but fewer side effects were observed in the vaccine group compared with the control group (p<0.00001). CONCLUSIONS Taken together, NSCLC tumour vaccines markedly prolong median OS (p<0.00001), median TTP (p=0.001) and median PFS (p=0.005), improve clinical response rate (p=0.05) and lessen adverse side effects (p<0.00001). Our meta-analysis suggests tumour vaccines improve the efficacy of the treatment, and also provide superiority in treatment of patients with advanced NSCLC among a variety of immunotherapy strategies.
Collapse
Affiliation(s)
- Min Wang
- Biotherapy Center, General Hospital of Beijing Military Command, Beijing, People's Republic of China
| | - Jun-Xia Cao
- Biotherapy Center, General Hospital of Beijing Military Command, Beijing, People's Republic of China
| | - Yi-Shan Liu
- Biotherapy Center, General Hospital of Beijing Military Command, Beijing, People's Republic of China
| | - Bei-Lei Xu
- Biotherapy Center, General Hospital of Beijing Military Command, Beijing, People's Republic of China
| | - Duo Li
- Biotherapy Center, General Hospital of Beijing Military Command, Beijing, People's Republic of China
| | - Xiao-Yan Zhang
- Biotherapy Center, General Hospital of Beijing Military Command, Beijing, People's Republic of China
| | - Jun-Li Li
- Biotherapy Center, General Hospital of Beijing Military Command, Beijing, People's Republic of China
| | - Jin-Long Liu
- Biotherapy Center, General Hospital of Beijing Military Command, Beijing, People's Republic of China
| | - Hai-Bo Wang
- Biotherapy Center, General Hospital of Beijing Military Command, Beijing, People's Republic of China
| | - Zheng-Xu Wang
- Biotherapy Center, General Hospital of Beijing Military Command, Beijing, People's Republic of China
| |
Collapse
|
17
|
Madureira P, de Mello RA, de Vasconcelos A, Zhang Y. Immunotherapy for lung cancer: for whom the bell tolls? Tumour Biol 2015; 36:1411-1422. [PMID: 25736929 DOI: 10.1007/s13277-015-3285-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 02/18/2015] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death and accounts for approximately 30% of all cancer deaths. Despite the recent developments in personalized therapy, the prognosis in lung cancer is still very poor. Immunotherapy is now emerging as a new hope for patients with lung cancer. It is well known that standard chemotherapeutic regimens have devastating effects for the patient's immune system. Therefore, the aim of immunotherapy is to specifically enhance the immune response against the tumour. Recently, many trials addressed the role of such therapies for metastatic non-small cell lung cancer (NSCLC) treatment: ipilimumab, tremelimumab, nivolumab and pembrolizumab are immunotherapeutic agents of high relevance in this field. Anti-tumour vaccines, as well as dendritic cell-based therapies, have emerged as potent inducers of immune response against the tumour. Herein, we will review some of the most promising cancer immunotherapies, highlighting their advantages and try to understand, in an immunological perspective, the missteps associated with the current treatments for cancer.
Collapse
Affiliation(s)
- Pedro Madureira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | | | | | | |
Collapse
|
18
|
Sharma RK, Chheda ZS, Jala VR, Haribabu B. Regulation of cytotoxic T-Lymphocyte trafficking to tumors by chemoattractants: implications for immunotherapy. Expert Rev Vaccines 2014; 14:537-49. [PMID: 25482400 DOI: 10.1586/14760584.2015.982101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cancer immunotherapy has recently emerged as an important treatment modality. FDA approval of provenge, ipilimumab and pembrolizumab has started to deliver on the long awaited promise of cancer immunotherapy. Many new modalities of immunotherapies targeting cytotoxic T lymphocytes (CTLs) responses, such as adoptive cell therapies and vaccines, are in advanced clinical trials. In all these immunotherapies, migration of CTLs to the tumor site is a critical step for achieving therapeutic efficacy. However, inefficient infiltration of activated CTLs into established tumors is increasingly being recognized as one of the major hurdles limiting efficacy. Mechanisms that control migration of CTLs to tumors are poorly defined. In this review, the authors discuss the chemoattractants and their receptors that have been implicated in endogenous- or immunotherapy-induced CTL recruitment to tumors and the potential for targeting these pathways for therapeutic efficacy.
Collapse
Affiliation(s)
- Rajesh K Sharma
- James Graham Brown Cancer Center, University of Louisville Health Sciences, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Recent advances in our understanding of cancer immunology resulted in the development of promising therapeutic agents for either nonantigen-specific immunotherapy, for example, monoclonal antibodies targeting immune checkpoints on the T-cell lymphocyte, and antigen-specific immunotherapy or vaccination. Here, we review the recently reported results from randomized controlled trials (RCTs) with the latter approach. RECENT FINDINGS Several trials indicated feasibility, safety, and potential for better patient outcomes. In resected early stage non-small-cell lung cancer, a phase II RCT with the MAGE-A3 vaccine showed a trend for improved disease-free interval (hazard ratio 0.75), now further evaluated in the large MAGRIT (MAGE-A3 as Adjuvant NSCLC Immunotherapy Trial) study. In stage III after chemoradiotherapy, the phase III START (Stimulating Targeted Antigenic Responses to NSCLC) trial with L-BLP25 vaccine resulted in a remarkable 10-month improvement in median survival in the concurrent chemoradiotherapy subgroup. In the advanced setting, the phase III study with the allogeneic tumor cell vaccine belagenpumatucel-L did not improve survival in the whole study, but interesting effects were seen in subgroups. SUMMARY Recent non-small-cell lung cancer vaccination trials did not meet their primary endpoint, but showed clear patient benefits in subgroup analyses. Confirmatory trials and identifying patients who will benefit using predictive factors, will hopefully bring these approaches in the clinic in the near future.
Collapse
|
20
|
O'Connor CM, Wilson-Robles H. Developing T Cell Cancer Immunotherapy in the Dog with Lymphoma. ILAR J 2014; 55:169-81. [DOI: 10.1093/ilar/ilu020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
21
|
Adam V, Wauters I, Vansteenkiste J. Melanoma-associated antigen-A3 vaccination in the treatment of non-small-cell lung cancer. Expert Opin Biol Ther 2014; 14:365-76. [DOI: 10.1517/14712598.2014.880421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Domingues D, Turner A, Silva MD, Marques DS, Mellidez JC, Wannesson L, Mountzios G, de Mello RA. Immunotherapy and lung cancer: current developments and novel targeted therapies. Immunotherapy 2014; 6:1221-1235. [PMID: 25496336 DOI: 10.2217/imt.14.82] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a highly prevalent and aggressive disease. In the metastatic setting, major advances include the incorporation of immunotherapy and targeted therapies into the clinician's therapeutic armamentarium. Standard chemotherapeutic regimens have long been reported to interfere with the immune response to the tumor; conversely, antitumor immunity may add to the effects of those therapies. The aim of immunotherapy is to specifically enhance the immune response directed to the tumor. Recently, many trials addressed the role of such therapies for metastatic NSCLC treatment: ipilimumab, tremelimumab, nivolumab and lambrolizumab are immunotherapeutic agents of main interest in this field. In addition, anti-tumor vaccines, such as MAGE-A3, Tecetomide, TG4010, CIMAvax, ganglioside vaccines, tumor cell vaccines and dendritic cell vaccines, emerged as potent inducers of immune response against the tumor. The current work aims to address the most recent developments regarding these innovative immunotherapies and their implementation in the treatment of metastatic NSCLC.
Collapse
Affiliation(s)
- Duarte Domingues
- Department of Medical Oncology, Portuguese Oncology Institute (IPO PORTO), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|