1
|
Abstract
Hypoxia is an important feature of the tumor microenvironment, and is closely associated with cell proliferation, angiogenesis, metabolism and the tumor immune response. All these factors can further promote tumor progression, increase tumor aggressiveness, enhance tumor metastatic potential and lead to poor prognosis. In this review, these effects of hypoxia on tumor biology will be discussed, along with their significance for tumor detection and treatment.
Collapse
Affiliation(s)
- Yue Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (12387Shenzhen People's Hospital), Shenzhen, Guangdong, China.,The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China.,Clinical Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China.,Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Long Zhao
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (12387Shenzhen People's Hospital), Shenzhen, Guangdong, China.,Clinical Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China.,Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiao-Feng Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (12387Shenzhen People's Hospital), Shenzhen, Guangdong, China.,Clinical Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China.,Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Li Y, Zhao L, Li XF. Targeting Hypoxia: Hypoxia-Activated Prodrugs in Cancer Therapy. Front Oncol 2021; 11:700407. [PMID: 34395270 PMCID: PMC8358929 DOI: 10.3389/fonc.2021.700407] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/09/2021] [Indexed: 12/18/2022] Open
Abstract
Hypoxia is an important characteristic of most solid malignancies, and is closely related to tumor prognosis and therapeutic resistance. Hypoxia is one of the most important factors associated with resistance to conventional radiotherapy and chemotherapy. Therapies targeting tumor hypoxia have attracted considerable attention. Hypoxia-activated prodrugs (HAPs) are bioreductive drugs that are selectively activated under hypoxic conditions and that can accurately target the hypoxic regions of solid tumors. Both single-agent and combined use with other drugs have shown promising antitumor effects. In this review, we discuss the mechanism of action and the current preclinical and clinical progress of several of the most widely used HAPs, summarize their existing problems and shortcomings, and discuss future research prospects.
Collapse
Affiliation(s)
- Yue Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,The First Affiliated Hospital, Jinan University, Guangzhou, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Long Zhao
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xiao-Feng Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
3
|
Shen B, Huang T, Sun Y, Jin Z, Li XF. Revisit 18F-fluorodeoxyglucose oncology positron emission tomography: "systems molecular imaging" of glucose metabolism. Oncotarget 2018; 8:43536-43542. [PMID: 28402949 PMCID: PMC5522167 DOI: 10.18632/oncotarget.16647] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/11/2017] [Indexed: 01/26/2023] Open
Abstract
18F-fluorodeoxyglucose (18F-FDG) positron emission tomography has become an important tool for detection, staging and management of many types of cancer. Oncology application of 18F-FDG bases on the knowledge that increase in glucose demand and utilization is a fundamental features of cancer. Pasteur effect, Warburg effect and reverse Warburg effect have been used to explain glucose metabolism in cancer. 18F-FDG accumulation in cancer is reportedly microenvironment-dependent, 18F-FDG avidly accumulates in poorly proliferating and hypoxic cancer cells, but low in well perfused (and proliferating) cancer cells. Cancer is a heterogeneous and complex “organ” containing multiple components, therefore, cancer needs to be investigated from systems biology point of view, we proposed the concept of “systems molecular imaging” for much better understanding systems biology of cancer. This article revisits 18F-FDG uptake mechanisms, its oncology applications and the role of 18F-FDG PET for “systems molecular imaging”.
Collapse
Affiliation(s)
- Baozhong Shen
- PET/CT/MRI Center, The Fourth Hospital of Harbin Medical University, Harbin, China.,Molecular Imaging Research Center, Harbin Medical University, Harbin, China
| | - Tao Huang
- Department of Radiology, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Yingying Sun
- PET/CT/MRI Center, The Fourth Hospital of Harbin Medical University, Harbin, China.,Molecular Imaging Research Center, Harbin Medical University, Harbin, China
| | - Zhongnan Jin
- PET/CT/MRI Center, The Fourth Hospital of Harbin Medical University, Harbin, China.,Molecular Imaging Research Center, Harbin Medical University, Harbin, China
| | - Xiao-Feng Li
- PET/CT/MRI Center, The Fourth Hospital of Harbin Medical University, Harbin, China.,Molecular Imaging Research Center, Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Xu Z, Li XF, Zou H, Sun X, Shen B. 18F-Fluoromisonidazole in tumor hypoxia imaging. Oncotarget 2017; 8:94969-94979. [PMID: 29212283 PMCID: PMC5706929 DOI: 10.18632/oncotarget.21662] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/21/2017] [Indexed: 12/19/2022] Open
Abstract
Hypoxia is a common feature of solid tumors that is closely associated with radiotherapy and chemotherapy resistance, metastasis and tumors prognosis. Thus, it is important to assess hypoxia in tumors for estimating prognosis and selecting appropriate treatment procedures. 18F-Fluoromisonidazole positron emission tomography (18F-FMISO PET) has been widely used to visualize tumor hypoxia in a comprehensive and noninvasive way, both in the clinical and preclinical settings. Here we review the concept, mechanisms and detection methods of tumor hypoxia. Furthermore, we discuss the correlation between 18F-FMISO PET and other detection methods, current applications of 18F-FMISO PET and the development prospects of this imaging technology.
Collapse
Affiliation(s)
- Zuoyu Xu
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiao-Feng Li
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongyan Zou
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China
| | - Xilin Sun
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Baozhong Shen
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
5
|
Triner D, Shah YM. Hypoxia-inducible factors: a central link between inflammation and cancer. J Clin Invest 2016; 126:3689-3698. [PMID: 27525434 DOI: 10.1172/jci84430] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The tumor immune response is in a dynamic balance between antitumor mechanisms, which serve to decrease cancer growth, and the protumor inflammatory response, which increases immune tolerance, cell survival, and proliferation. Hypoxia and expression of HIF-1α and HIF-2α are characteristic features of all solid tumors. HIF signaling serves as a major adaptive mechanism in tumor growth in a hypoxic microenvironment. HIFs represent a critical signaling node in the switch to protumorigenic inflammatory responses through recruitment of protumor immune cells and altered immune cell effector functions to suppress antitumor immune responses and promote tumor growth through direct growth-promoting cytokine production, angiogenesis, and ROS production. Modulating HIF function will be an important mechanism to dampen the tumor-promoting inflammatory response and inhibit cancer growth.
Collapse
|