1
|
Abdullah, Din M, Waris A, Khan M, Ali S, Muhammad R, Salman M. The contemporary immunoassays for HIV diagnosis: a concise overview. ASIAN BIOMED 2023; 17:3-12. [PMID: 37551202 PMCID: PMC10405330 DOI: 10.2478/abm-2023-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Recent advances in human immunodeficiency virus (HIV) diagnostics have improved the management of disease progression significantly, which have also boosted the efficacy of antiviral therapies. The detection of HIV at the earliest is very important. A highly recognized and effective virological biomarker for acute HIV infections is p24 antigen. This brief overview is based on advances of HIV diagnosis while focusing on the latest HIV testing technologies including HIV-specific antigens detecting assays of both anti-HIV antibodies and p24 antigen. In addition to other emerging molecular diagnostics for acute HIV infection, the utilization of p24 antigen has been summarized. Moreover, it has been explained how these immunoassays have reduced the window period for detection of HIV in the acute stage of infection.
Collapse
Affiliation(s)
- Abdullah
- Department of Health and Biological Sciences, Abasyn University Peshawar, Peshawar25000, Pakistan
| | - Misbahud Din
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad45320, Pakistan
| | - Abdul Waris
- Department of Biomedical Sciences, City University of Hong Kong, Shezhen518057, Hong Kong SAR
| | - Muddasir Khan
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar25120, Pakistan
| | - Sajjad Ali
- Department of Zoology, University of Buner, Buner19281, Pakistan
| | - Riaz Muhammad
- Department of Health and Biological Sciences, Abasyn University Peshawar, Peshawar25000, Pakistan
- Department of Zoology, Government Degree College Lakarai, Mohmand24651, Pakistan
| | - Muhammad Salman
- Department of Health and Biological Sciences, Abasyn University Peshawar, Peshawar25000, Pakistan
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok10330, Thailand
| |
Collapse
|
2
|
Simultaneous detection of four specific DNAs fragments based on two-dimensional bimetallic MOF nanosheets. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Abstract
Despite numerous studies of immune sexual dimorphism, sexual differences are not rigorously mapped and dimorphic mechanisms are incompletely understood. Current immune research typically studies sex differences in specific cells, tissues, or diseases but without providing an integrated picture. To connect the dots, we suggest comprehensive research approaches to better our understanding of immune sexual dimorphism and its mechanisms.
Collapse
Affiliation(s)
- Shani Talia Gal-Oz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tal Shay
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
4
|
Castillo-Henríquez L, Brenes-Acuña M, Castro-Rojas A, Cordero-Salmerón R, Lopretti-Correa M, Vega-Baudrit JR. Biosensors for the Detection of Bacterial and Viral Clinical Pathogens. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6926. [PMID: 33291722 PMCID: PMC7730340 DOI: 10.3390/s20236926] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 01/09/2023]
Abstract
Biosensors are measurement devices that can sense several biomolecules, and are widely used for the detection of relevant clinical pathogens such as bacteria and viruses, showing outstanding results. Because of the latent existing risk of facing another pandemic like the one we are living through due to COVID-19, researchers are constantly looking forward to developing new technologies for diagnosis and treatment of infections caused by different bacteria and viruses. Regarding that, nanotechnology has improved biosensors' design and performance through the development of materials and nanoparticles that enhance their affinity, selectivity, and efficacy in detecting these pathogens, such as employing nanoparticles, graphene quantum dots, and electrospun nanofibers. Therefore, this work aims to present a comprehensive review that exposes how biosensors work in terms of bacterial and viral detection, and the nanotechnological features that are contributing to achieving a faster yet still efficient COVID-19 diagnosis at the point-of-care.
Collapse
Affiliation(s)
- Luis Castillo-Henríquez
- National Center for High Technology (CeNAT), National Laboratory of Nanotechnology (LANOTEC), San José 1174-1200, Costa Rica;
- Physical Chemistry Laboratory, Faculty of Pharmacy, University of Costa Rica, San José 11501-2060, Costa Rica
| | - Mariana Brenes-Acuña
- Chemistry School, National University of Costa Rica, Heredia 86-3000, Costa Rica; (M.B.-A.); (A.C.-R.); (R.C.-S.)
| | - Arianna Castro-Rojas
- Chemistry School, National University of Costa Rica, Heredia 86-3000, Costa Rica; (M.B.-A.); (A.C.-R.); (R.C.-S.)
| | - Rolando Cordero-Salmerón
- Chemistry School, National University of Costa Rica, Heredia 86-3000, Costa Rica; (M.B.-A.); (A.C.-R.); (R.C.-S.)
| | - Mary Lopretti-Correa
- Nuclear Research Center, Faculty of Science, Universidad de la República (UdelaR), Montevideo 11300, Uruguay;
| | - José Roberto Vega-Baudrit
- National Center for High Technology (CeNAT), National Laboratory of Nanotechnology (LANOTEC), San José 1174-1200, Costa Rica;
- Chemistry School, National University of Costa Rica, Heredia 86-3000, Costa Rica; (M.B.-A.); (A.C.-R.); (R.C.-S.)
| |
Collapse
|
5
|
Soares RRG, Varela JC, Neogi U, Ciftci S, Ashokkumar M, Pinto IF, Nilsson M, Madaboosi N, Russom A. Sub-attomole detection of HIV-1 using padlock probes and rolling circle amplification combined with microfluidic affinity chromatography. Biosens Bioelectron 2020; 166:112442. [PMID: 32755809 DOI: 10.1016/j.bios.2020.112442] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 10/23/2022]
Abstract
Despite significant progress in diagnostics and disease management during the past decades, human immunodeficiency virus (HIV) infections are still responsible for nearly 1 million deaths every year, mostly in resource-limited settings. Thus, novel, accurate and cost-effective tools for viral load monitoring become crucial to allow specific diagnostics and the effective monitoring of the associated antiviral therapies. Herein, we report an effective combination of a (1) padlock probe (PLP)-mediated rolling circle amplification (RCA) bioassay and an (2) agarose bead-based microfluidic device for the affinity chromatography-based capture and detection of RCA products (RCPs) pre-labelled simultaneously with biotin and an organic fluorophore. This method allowed the efficient capture of ~1 μm-sized RCPs followed by their quantification either as discrete signals or an average fluorescence signal, thus being compatible with both high-resolution imaging for maximum sensitivity as well as simpler optical detection setups. A limit of detection < 30 fM was obtained for HIV-1 synthetic target with just a single round of RCA, comparable to recently reported procedures requiring technically complex amplification strategies such as hyperbranching and/or enzymatic digestion/amplification. Furthermore, targeting a set of five conserved regions in the HIV-1 gag gene, the method could specifically detect HIV-1 in 293T cell culture supernatants, as well as a set of 11 HIV-1 NIH reference samples with four different subtypes. The reported method provides simplicity of operation, unique versatility of signal transduction (i.e. average or discrete signals), and potential coupling with previously reported miniaturized photodetectors. These combined features hold promise for bringing RCA-based molecular diagnostics closer to the point-of-care.
Collapse
Affiliation(s)
- Ruben R G Soares
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden; Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden.
| | - João C Varela
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Huddinge, Sweden
| | - Sibel Ciftci
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Manickam Ashokkumar
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Huddinge, Sweden
| | - Inês F Pinto
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - Mats Nilsson
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden.
| | - Narayanan Madaboosi
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden.
| | - Aman Russom
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden.
| |
Collapse
|
6
|
Dehghani-Dehej F, Hosseini Z, Mortazkar P, Khanaliha K, Esghaei M, Fakhim A, Bokharaei-Salim F. Prevalence of HCV and/or HBV coinfection in Iranian HIV-infected patients. Future Virol 2020. [PMCID: PMC7273902 DOI: 10.2217/fvl-2019-0066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aim: HIV-infected patients risk coinfection with HBV and HCV. This study aimed to investigate molecular epidemiology of HBV and HCV coinfection in Iranian HIV-infected individuals. Materials & methods: In this cross-sectional study, serological markers of HBV and HCV infection (hepatitis B surface antigen [HBsAg], hepatitis B e-antigen [HBeAg], hepatitis B e-antibody [HBeAb] and hepatitis B core antibody [HBcAb]) and anti-HCV antibodies [anti-HCV Abs] were tested in 198 Iranian HIV-infected patients. From plasma, HBV viral load was determined using COBAS TaqMan 48, and HCV-RNA was detected by reverse transcriptase-nested PCR. Results: 85 out of 198 (42.9%) patients were anti-HCV Ab positive and 42/198 (21.2%) had detectable HCV-RNA. Eight (4.0%) had traceable HBV-DNA. All these patients were infected by HBV genotype D. 55 (27.8%) were HBcAb positive. Nine (4.4%) were HBsAg and anti-HCV Ab positive. Conclusion: None were HIV-RNA/HCV-RNA/HBV-DNA positive, 21.2% were HIV-RNA/HCV-RNA positive and 4.0% were HIV-RNA/HBV-DNA positive. Therefore, studies on diagnosing these infections in HIV-infected individuals may be valuable.
Collapse
Affiliation(s)
- Farzaneh Dehghani-Dehej
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Master of Science of Virology, Iran University of Medical Sciences, Tehran, Iran
| | - Zinat Hosseini
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- General Medical Student, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Poupak Mortazkar
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- PhD Student of Virology, Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Khanaliha
- Research Center of Pediatric Infectious Diseases, Institute of Immunology & Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Assistant Professor of Parasitology, Research Center of Pediatric Infectious Diseases, Institute of Immunology & Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Esghaei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Associate Professor of Virology, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Fakhim
- Department of Architectural Engineering, Faculty of Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran
- Student of Architectural Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Assistant Professor of Virology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
8
|
Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018; 3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.
Collapse
Affiliation(s)
- Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Guillermo Lasarte Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Kim E. Sapsford
- OMPT/CDRH/OIR/DMD Bacterial Respiratory and Medical Countermeasures Branch, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20036, United States
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
9
|
Dehghani-Dehej F, Sarvari J, Esghaei M, Hosseini SY, Garshasbi S, Kalantari S, Monavari SH, Fakhim A, Keyvani H, Bokharaei-Salim F. Presence of different hepatitis C virus genotypes in plasma and peripheral blood mononuclear cell samples of Iranian patients with HIV infection. J Med Virol 2018; 90:1343-1351. [DOI: 10.1002/jmv.24925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/31/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Farzaneh Dehghani-Dehej
- Department of Bacteriology and Virology; School of Medicine; Shiraz University of Medical Sciences; Shiraz Iran
| | - Jamal Sarvari
- Department of Bacteriology and Virology; School of Medicine; Shiraz University of Medical Sciences; Shiraz Iran
- Gastroenterohepatology Research Center; Shiraz University of Medical Sciences; Shiraz Iran
| | - Maryam Esghaei
- Department of Virology; School of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - Seyed Y. Hosseini
- Department of Bacteriology and Virology; School of Medicine; Shiraz University of Medical Sciences; Shiraz Iran
| | - Saba Garshasbi
- HIV Laboratory of National Center; Deputy of Health; Iran University of Medical Sciences; Tehran Iran
| | - Saeed Kalantari
- Departments of Infectious Diseases and Tropical Medicine; Iran University of Medical Sciences; Tehran Iran
| | - Seyed H. Monavari
- Department of Virology; School of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - Atousa Fakhim
- Department of Architectural Engineering; Faculty of Engineering; Islamic Azad University; South Tehran Branch; Tehran Iran
| | - Hossein Keyvani
- Department of Virology; School of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - Farah Bokharaei-Salim
- Department of Virology; School of Medicine; Iran University of Medical Sciences; Tehran Iran
- HIV Laboratory of National Center; Deputy of Health; Iran University of Medical Sciences; Tehran Iran
| |
Collapse
|