1
|
França VLB, Amaral JL, do Ó Pessoa C, Carvalho HF, Freire VN. Shedding light on cancer immunology at the molecular level: A quantum biochemistry study of representative PD-1/PD-L1 conformations. Biochem Biophys Res Commun 2024; 735:150832. [PMID: 39423575 DOI: 10.1016/j.bbrc.2024.150832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/06/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Programmed death 1 (PD-1) binding to PD-L1 is a potent mechanism used by immunogenic tumors to evade the immune system and the immune checkpoint PD-1PD-L1 has emerged as a promising target in the search for new drugs to improve cancer treatment. The crystallographic structure of humanPD-1humanPD-L1 shed light on the molecular characterization of this system and allowed computational studies to be carried out to characterize structural behaviors. METHODS This study demonstrated the importance of analyzing the flexibility of protein systems through molecular dynamics simulations (MDS) and its impacts on the interaction energy obtained through quantum biochemistry. RESULTS The computational results obtained provide a description of the flexibility and energetic profile of the PD-1PD-L1 contact surface using representative conformations from MDS. Variations of up to 50 % in the total interaction energy values were detected depending on the scrutinized conformation, which can be mainly attributed to the flexibility of the CC' loop, FG loop and ASP85-GLN91 of PD-1 and the MET58-LYS62 segment of PD-L1. Quantum biochemistry revealed the three hot spots in PD-L1: ARG113L-ARG125L > ILE54L-VAL76L > ALA18L-ASP26L; and two energetic hot spots in PD-1: ALA125-ARG139 > VAL63-GLN88. Nonetheless, VAL63-GLN88 and GLY124-ARG139 exhibit significant variation in interaction energy between different conformations, while ARG113L-ARG125L is the only hot spot with high energetic fluctuation on the PD-L1 surface. CONCLUSION This is the first application of MDS coupled to dimensionality reduction and density functional theory (DFT) demonstrating new structural and energetic features that might be useful in discovering/designing more potent PD-1PD-L1 inhibitors.
Collapse
Affiliation(s)
- Victor L B França
- Department of Physiology and Pharmacology, Federal University of Ceará, 60430-270, Fortaleza, Ceará, Brazil; Department of Physics, Federal University of Ceará, Fortaleza, 60440-900, Brazil
| | - Jackson L Amaral
- Department of Biological Sciences, Federal University of Piauí, Bom Jesus, 64900-000, Brazil.
| | - Cláudia do Ó Pessoa
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, 60430-275, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-864, Campinas, São Paulo, Brazil
| | - Valder N Freire
- Department of Physics, Federal University of Ceará, Fortaleza, 60440-900, Brazil
| |
Collapse
|
2
|
França VLB, Bezerra EM, da Costa RF, Carvalho HF, Freire VN, Matos G. Alzheimer's Disease Immunotherapy and Mimetic Peptide Design for Drug Development: Mutation Screening, Molecular Dynamics, and a Quantum Biochemistry Approach Focusing on Aducanumab::Aβ2-7 Binding Affinity. ACS Chem Neurosci 2024; 15:3543-3562. [PMID: 39302203 PMCID: PMC11450751 DOI: 10.1021/acschemneuro.4c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Seven treatments are approved for Alzheimer's disease, but five of them only relieve symptoms and do not alter the course of the disease. Aducanumab (Adu) and lecanemab are novel disease-modifying antiamyloid-β (Aβ) human monoclonal antibodies that specifically target the pathophysiology of Alzheimer's disease (AD) and were recently approved for its treatment. However, their administration is associated with serious side effects, and their use is limited to early stages of the disease. Therefore, drug discovery remains of great importance in AD research. To gain new insights into the development of novel drugs for Alzheimer's disease, a combination of techniques was employed, including mutation screening, molecular dynamics, and quantum biochemistry. These were used to outline the interfacial interactions of the Aducanumab::Aβ2-7 complex. Our analysis identified critical stabilizing contacts, revealing up to 40% variation in the affinity of the Adu chains for Aβ2-7 depending on the conformation outlined. Remarkably, two complementarity determining regions (CDRs) of the Adu heavy chain (HCDR3 and HCDR2) and one CDR of the Adu light chain (LCDR3) accounted for approximately 77% of the affinity of Adu for Aβ2-7, confirming their critical role in epitope recognition. A single mutation, originally reported to have the potential to increase the affinity of Adu for Aβ2-7, was shown to decrease its structural stability without increasing the overall binding affinity. Mimetic peptides that have the potential to inhibit Aβ aggregation were designed by using computational outcomes. Our results support the use of these peptides as promising drugs with great potential as inhibitors of Aβ aggregation.
Collapse
Affiliation(s)
- Victor L. B. França
- Department
of Physiology and Pharmacology, Federal
University of Ceará, 60430-270 Fortaleza, Ceará, Brazil
| | - Eveline M. Bezerra
- Department
of Sciences, Mathematics and Statistics, Federal Rural University of Semi-Arid (UFERSA), 59625-900 Mossoró, RN, Brazil
| | - Roner F. da Costa
- Department
of Sciences, Mathematics and Statistics, Federal Rural University of Semi-Arid (UFERSA), 59625-900 Mossoró, RN, Brazil
| | - Hernandes F. Carvalho
- Department
of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-864 Campinas, São
Paulo, Brazil
| | - Valder N. Freire
- Department
of Physics, Federal University of Ceará, 60430-270 Fortaleza, Ceará, Brazil
| | - Geanne Matos
- Department
of Physiology and Pharmacology, Federal
University of Ceará, 60430-270 Fortaleza, Ceará, Brazil
| |
Collapse
|
3
|
González-Aravena M, Galbán-Malagón C, Castro-Nallar E, Barriga GP, Neira V, Krüger L, Adell AD, Olivares-Pacheco J. Detection of SARS-CoV-2 in Wastewater Associated with Scientific Stations in Antarctica and Possible Risk for Wildlife. Microorganisms 2024; 12:743. [PMID: 38674687 PMCID: PMC11051888 DOI: 10.3390/microorganisms12040743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/10/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
Before December 2020, Antarctica had remained free of COVID-19 cases. The main concern during the pandemic was the limited health facilities available at Antarctic stations to deal with the disease as well as the potential impact of SARS-CoV-2 on Antarctic wildlife through reverse zoonosis. In December 2020, 60 cases emerged in Chilean Antarctic stations, disrupting the summer campaign with ongoing isolation needs. The SARS-CoV-2 RNA was detected in the wastewater of several scientific stations. In Antarctica, treated wastewater is discharged directly into the seawater. No studies currently address the recovery of infectious virus particles from treated wastewater, but their presence raises the risk of infecting wildlife and initiating new replication cycles. This study highlights the initial virus detection in wastewater from Antarctic stations, identifying viral RNA via RT-qPCR targeting various genomic regions. The virus's RNA was found in effluent from two wastewater plants at Maxwell Bay and O'Higgins Station on King George Island and the Antarctic Peninsula, respectively. This study explores the potential for the reverse zoonotic transmission of SARS-CoV-2 from humans to Antarctic wildlife due to the direct release of viral particles into seawater. The implications of such transmission underscore the need for continued vigilance and research.
Collapse
Affiliation(s)
| | - Cristóbal Galbán-Malagón
- GEMA, Center for Genomics, Ecology & Environment, Universidad Mayor, Santiago 8580745, Chile;
- Anillo en Ciencia y Tecnología Antártica POLARIX, Santiago 8370146, Chile;
- Institute for Environment, Florida International University, Miami, FL 33199, USA
| | - Eduardo Castro-Nallar
- Anillo en Ciencia y Tecnología Antártica POLARIX, Santiago 8370146, Chile;
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Talca, Talca 3481118, Chile
- Centro de Ecología Integrativa, Universidad de Talca, Campus Talca, Talca 3460000, Chile
| | - Gonzalo P. Barriga
- Laboratorio de Virus Emergentes, Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| | - Víctor Neira
- Medicina Preventiva Animal, Facultad de Ciencias Veterinarias, Universidad de Chile, Santiago 8820808, Chile;
| | - Lucas Krüger
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas 6200985, Chile;
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago 7750000, Chile
| | - Aiko D. Adell
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 9350841, Chile;
- Millennium Initiative for Collaborative Research on Bacterial Resistance, MICROB-R, Santiago 7550000, Chile
| | - Jorge Olivares-Pacheco
- Millennium Initiative for Collaborative Research on Bacterial Resistance, MICROB-R, Santiago 7550000, Chile
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales, GRABPA, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| |
Collapse
|
4
|
Peka M, Balatsky V. Analysis of RBD-ACE2 interactions in livestock species as a factor in the spread of SARS-CoV-2 among animals. Vet Anim Sci 2023; 21:100303. [PMID: 37521409 PMCID: PMC10372456 DOI: 10.1016/j.vas.2023.100303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
The high mutation rate of SARS-CoV-2, which has led to the emergence of a number of virus variants, creates risks of transmission from humans to animal species and the emergence of new animal reservoirs of COVID-19. This study aimed to identify animal species among livestock susceptible to infection and develop an approach that would be possible to use for assessing the hazards caused by new SARS-CoV-2 variants for animals. Bioinformatic analysis was used to evaluate the ability of receptor-binding domains (RBDs) of different SARS-CoV-2 variants to interact with ACE2 receptors of livestock species. The results indicated that the stability of RBD-ACE2 complexes depends on both amino acid residues in the ACE2 sequences of animal species and on mutations in the RBDs of SARS-CoV-2 variants, with the residues in the interface of the RBD-ACE2 complex being the most important. All studied SARS-CoV-2 variants had high affinity for ferret and American mink receptors, while the affinity for horse, donkey, and bird species' receptors significantly increased in the highly mutated Omicron variant. Hazards that future SARS-CoV-2 variants may acquire specificity to new animal species remain high given the mutability of the virus. The continued use and expansion of the bioinformatic approach presented in this study may be relevant for monitoring transmission risks and preventing the emergence of new reservoirs of COVID-19 among animals.
Collapse
Affiliation(s)
- Mykyta Peka
- V. N. Karazin Kharkiv National University, 4 Svobody Sq, Kharkiv, 61022, Ukraine
- Institute of Pig Breeding and Agroindustrial Production, National Academy of Agrarian Sciences of Ukraine, 1 Shvedska Mohyla St, Poltava, 36013, Ukraine
| | - Viktor Balatsky
- V. N. Karazin Kharkiv National University, 4 Svobody Sq, Kharkiv, 61022, Ukraine
- Institute of Pig Breeding and Agroindustrial Production, National Academy of Agrarian Sciences of Ukraine, 1 Shvedska Mohyla St, Poltava, 36013, Ukraine
| |
Collapse
|