1
|
Lapaillerie D, Lelandais B, Mauro E, Lagadec F, Tumiotto C, Miskey C, Ferran G, Kuschner N, Calmels C, Métifiot M, Rooryck C, Ivics Z, Ruff M, Zimmer C, Lesbats P, Toutain J, Parissi V. Modulation of the intrinsic chromatin binding property of HIV-1 integrase by LEDGF/p75. Nucleic Acids Res 2021; 49:11241-11256. [PMID: 34634812 PMCID: PMC8565322 DOI: 10.1093/nar/gkab886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
The stable insertion of the retroviral genome into the host chromosomes requires the association between integration complexes and cellular chromatin via the interaction between retroviral integrase and the nucleosomal target DNA. This final association may involve the chromatin-binding properties of both the retroviral integrase and its cellular cofactor LEDGF/p75. To investigate this and better understand the LEDGF/p75-mediated chromatin tethering of HIV-1 integrase, we used a combination of biochemical and chromosome-binding assays. Our study revealed that retroviral integrase has an intrinsic ability to bind and recognize specific chromatin regions in metaphase even in the absence of its cofactor. Furthermore, this integrase chromatin-binding property was modulated by the interaction with its cofactor LEDGF/p75, which redirected the enzyme to alternative chromosome regions. We also better determined the chromatin features recognized by each partner alone or within the functional intasome, as well as the chronology of efficient LEDGF/p75-mediated targeting of HIV-1 integrase to chromatin. Our data support a new chromatin-binding function of integrase acting in concert with LEDGF/p75 for the optimal association with the nucleosomal substrate. This work also provides additional information about the behavior of retroviral integration complexes in metaphase chromatin and the mechanism of action of LEDGF/p75 in this specific context.
Collapse
Affiliation(s)
- Delphine Lapaillerie
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed. Bordeaux, France
| | - Benoît Lelandais
- Imaging and modeling unit, Computational Biology Department, Institut Pasteur, Paris, France
| | - Eric Mauro
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed. Bordeaux, France
| | - Floriane Lagadec
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed. Bordeaux, France
| | - Camille Tumiotto
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed. Bordeaux, France
| | - Csaba Miskey
- Paul-Ehrlich-Institute, division of medical biotechnology, Langen, Germany
| | | | | | - Christina Calmels
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed. Bordeaux, France
| | - Mathieu Métifiot
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed. Bordeaux, France
| | | | - Zoltan Ivics
- Paul-Ehrlich-Institute, division of medical biotechnology, Langen, Germany
| | - Marc Ruff
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Département de Biologie Structurale intégrative, UDS, U596 INSERM, UMR7104, CNRS, Strasbourg, France
| | - Christophe Zimmer
- Imaging and modeling unit, Computational Biology Department, Institut Pasteur, Paris, France
| | - Paul Lesbats
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed. Bordeaux, France
| | - Jérôme Toutain
- CHU de Bordeaux, Service de Génétique Médicale, Bordeaux France
| | - Vincent Parissi
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed. Bordeaux, France
| |
Collapse
|
2
|
Matysiak J, Lesbats P, Mauro E, Lapaillerie D, Dupuy JW, Lopez AP, Benleulmi MS, Calmels C, Andreola ML, Ruff M, Llano M, Delelis O, Lavigne M, Parissi V. Modulation of chromatin structure by the FACT histone chaperone complex regulates HIV-1 integration. Retrovirology 2017; 14:39. [PMID: 28754126 PMCID: PMC5534098 DOI: 10.1186/s12977-017-0363-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/24/2017] [Indexed: 01/23/2023] Open
Abstract
Background Insertion of retroviral genome DNA occurs in the chromatin of the host cell. This step is modulated by chromatin structure as nucleosomes compaction was shown to prevent HIV-1 integration and chromatin remodeling has been reported to affect integration efficiency. LEDGF/p75-mediated targeting of the integration complex toward RNA polymerase II (polII) transcribed regions ensures optimal access to dynamic regions that are suitable for integration. Consequently, we have investigated the involvement of polII-associated factors in the regulation of HIV-1 integration. Results Using a pull down approach coupled with mass spectrometry, we have selected the FACT (FAcilitates Chromatin Transcription) complex as a new potential cofactor of HIV-1 integration. FACT is a histone chaperone complex associated with the polII transcription machinery and recently shown to bind LEDGF/p75. We report here that a tripartite complex can be formed between HIV-1 integrase, LEDGF/p75 and FACT in vitro and in cells. Biochemical analyzes show that FACT-dependent nucleosome disassembly promotes HIV-1 integration into chromatinized templates, and generates highly favored nucleosomal structures in vitro. This effect was found to be amplified by LEDGF/p75. Promotion of this FACT-mediated chromatin remodeling in cells both increases chromatin accessibility and stimulates HIV-1 infectivity and integration. Conclusions Altogether, our data indicate that FACT regulates HIV-1 integration by inducing local nucleosomes dissociation that modulates the functional association between the incoming intasome and the targeted nucleosome. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0363-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julien Matysiak
- Fundamental Microbiology and Pathogenicity Laboratory, UMR 5234 CNRS, University of Bordeaux, SFR TransBioMed, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France.,International Associated Laboratory (LIA) of Microbiology and Immunology, CNRS/University de Bordeaux/Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Bordeaux, France
| | - Paul Lesbats
- Fundamental Microbiology and Pathogenicity Laboratory, UMR 5234 CNRS, University of Bordeaux, SFR TransBioMed, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France.,International Associated Laboratory (LIA) of Microbiology and Immunology, CNRS/University de Bordeaux/Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Bordeaux, France
| | - Eric Mauro
- Fundamental Microbiology and Pathogenicity Laboratory, UMR 5234 CNRS, University of Bordeaux, SFR TransBioMed, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France.,International Associated Laboratory (LIA) of Microbiology and Immunology, CNRS/University de Bordeaux/Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Bordeaux, France
| | - Delphine Lapaillerie
- Fundamental Microbiology and Pathogenicity Laboratory, UMR 5234 CNRS, University of Bordeaux, SFR TransBioMed, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France.,International Associated Laboratory (LIA) of Microbiology and Immunology, CNRS/University de Bordeaux/Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Bordeaux, France.,Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Paris, France
| | - Jean-William Dupuy
- Centre Génomique fonctionnelle Bordeaux, Plateforme Proteome, Université de Bordeaux, Bordeaux, France
| | - Angelica P Lopez
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Mohamed Salah Benleulmi
- Fundamental Microbiology and Pathogenicity Laboratory, UMR 5234 CNRS, University of Bordeaux, SFR TransBioMed, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France.,International Associated Laboratory (LIA) of Microbiology and Immunology, CNRS/University de Bordeaux/Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Bordeaux, France.,Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Paris, France
| | - Christina Calmels
- Fundamental Microbiology and Pathogenicity Laboratory, UMR 5234 CNRS, University of Bordeaux, SFR TransBioMed, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France.,International Associated Laboratory (LIA) of Microbiology and Immunology, CNRS/University de Bordeaux/Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Bordeaux, France.,Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Paris, France
| | - Marie-Line Andreola
- Fundamental Microbiology and Pathogenicity Laboratory, UMR 5234 CNRS, University of Bordeaux, SFR TransBioMed, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France.,International Associated Laboratory (LIA) of Microbiology and Immunology, CNRS/University de Bordeaux/Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Bordeaux, France.,Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Paris, France
| | - Marc Ruff
- Département de Biologie Structurale Intégrative, UDS, U596 INSERM, UMR7104 CNRS, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Illkirch-Graffenstaden, France
| | - Manuel Llano
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Olivier Delelis
- LBPA, UMR8113, CNRS, ENS-Cachan, Cachan, France.,Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Paris, France
| | - Marc Lavigne
- Department of Virology, UMR 3569, CNRS, Institut Pasteur, Paris, France.,Institut Cochin-INSERM U1016-CNRS UMR8104, Université Paris Descartes, Paris, France.,Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Paris, France
| | - Vincent Parissi
- Fundamental Microbiology and Pathogenicity Laboratory, UMR 5234 CNRS, University of Bordeaux, SFR TransBioMed, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France. .,International Associated Laboratory (LIA) of Microbiology and Immunology, CNRS/University de Bordeaux/Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Bordeaux, France. .,Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Paris, France.
| |
Collapse
|
3
|
Thierry S, Benleulmi MS, Sinzelle L, Thierry E, Calmels C, Chaignepain S, Waffo-Teguo P, Merillon JM, Budke B, Pasquet JM, Litvak S, Ciuffi A, Sung P, Connell P, Hauber I, Hauber J, Andreola ML, Delelis O, Parissi V. Dual and Opposite Effects of hRAD51 Chemical Modulation on HIV-1 Integration. ACTA ACUST UNITED AC 2015; 22:712-23. [PMID: 26051216 DOI: 10.1016/j.chembiol.2015.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/31/2015] [Accepted: 04/22/2015] [Indexed: 12/24/2022]
Abstract
The cellular DNA repair hRAD51 protein has been shown to restrict HIV-1 integration both in vitro and in vivo. To investigate its regulatory functions, we performed a pharmacological analysis of the retroviral integration modulation by hRAD51. We found that, in vitro, chemical activation of hRAD51 stimulates its integration inhibitory properties, whereas inhibition of hRAD51 decreases the integration restriction, indicating that the modulation of HIV-1 integration depends on the hRAD51 recombinase activity. Cellular analyses demonstrated that cells exhibiting high hRAD51 levels prior to de novo infection are more resistant to integration. On the other hand, when hRAD51 was activated during integration, cells were more permissive. Altogether, these data establish the functional link between hRAD51 activity and HIV-1 integration. Our results highlight the multiple and opposite effects of the recombinase during integration and provide new insights into the cellular regulation of HIV-1 replication.
Collapse
Affiliation(s)
| | | | - Ludivine Sinzelle
- MFP, UMR5234, CNRS-Université de Bordeaux, SFR Transbiomed, 33076 Bordeaux, France
| | | | - Christina Calmels
- MFP, UMR5234, CNRS-Université de Bordeaux, SFR Transbiomed, 33076 Bordeaux, France
| | | | - Pierre Waffo-Teguo
- GESVAB, EA 3675 - UFR Pharmacie, Université de Bordeaux, ISVV, 33076 Bordeaux, France
| | - Jean-Michel Merillon
- GESVAB, EA 3675 - UFR Pharmacie, Université de Bordeaux, ISVV, 33076 Bordeaux, France
| | - Brian Budke
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Jean-Max Pasquet
- Laboratoire Biothérapies des Maladies Génétiques et Cancers, INSERM U1035, Université de Bordeaux, 33076 Bordeaux, France
| | - Simon Litvak
- MFP, UMR5234, CNRS-Université de Bordeaux, SFR Transbiomed, 33076 Bordeaux, France
| | - Angela Ciuffi
- Institute of Microbiology (IMUL), Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Patrick Sung
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT 06320-8024, USA
| | - Philip Connell
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Ilona Hauber
- HPI, Leibniz Institute for Experimental Virology, German Center for Infection Research (DZIF), 20251 Hamburg, Germany
| | - Joachim Hauber
- HPI, Leibniz Institute for Experimental Virology, German Center for Infection Research (DZIF), 20251 Hamburg, Germany
| | - Marie-Line Andreola
- MFP, UMR5234, CNRS-Université de Bordeaux, SFR Transbiomed, 33076 Bordeaux, France
| | | | - Vincent Parissi
- MFP, UMR5234, CNRS-Université de Bordeaux, SFR Transbiomed, 33076 Bordeaux, France.
| |
Collapse
|
4
|
Benleulmi MS, Matysiak J, Henriquez DR, Vaillant C, Lesbats P, Calmels C, Naughtin M, Leon O, Skalka AM, Ruff M, Lavigne M, Andreola ML, Parissi V. Intasome architecture and chromatin density modulate retroviral integration into nucleosome. Retrovirology 2015; 12:13. [PMID: 25807893 PMCID: PMC4358916 DOI: 10.1186/s12977-015-0145-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/19/2015] [Indexed: 01/19/2023] Open
Abstract
Background Retroviral integration depends on the interaction between intasomes, host chromatin and cellular targeting cofactors as LEDGF/p75 or BET proteins. Previous studies indicated that the retroviral integrase, by itself, may play a role in the local integration site selection within nucleosomal target DNA. We focused our study on this local association by analyzing the intrinsic properties of various retroviral intasomes to functionally accommodate different chromatin structures in the lack of other cofactors. Results Using in vitro conditions allowing the efficient catalysis of full site integration without these cofactors, we show that distinct retroviral integrases are not equally affected by chromatin compactness. Indeed, while PFV and MLV integration reactions are favored into dense and stable nucleosomes, HIV-1 and ASV concerted integration reactions are preferred into poorly dense chromatin regions of our nucleosomal acceptor templates. Predicted nucleosome occupancy around integration sites identified in infected cells suggests the presence of a nucleosome at the MLV and HIV-1 integration sites surrounded by differently dense chromatin. Further analyses of the relationships between the in vitro integration site selectivity and the structure of the inserted DNA indicate that structural constraints within intasomes could account for their ability to accommodate nucleosomal DNA and could dictate their capability to bind nucleosomes functionally in these specific chromatin contexts. Conclusions Thus, both intasome architecture and compactness of the chromatin surrounding the targeted nucleosome appear important determinants of the retroviral integration site selectivity. This supports a mechanism involving a global targeting of the intasomes toward suitable chromatin regions followed by a local integration site selection modulated by the intrinsic structural constraints of the intasomes governing the target DNA bending and dictating their sensitivity toward suitable specific nucleosomal structures and density. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0145-9) contains supplementary material, which is available to authorized users.
Collapse
|
5
|
Louvain de Souza T, de Souza Campos Fernandes RC, Medina-Acosta E. HIV-1 control in battlegrounds: important host genetic variations for HIV-1 mother-to-child transmission and progression to clinical pediatric AIDS. Future Virol 2012. [DOI: 10.2217/fvl.12.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HIV-1 mother-to-child transmission (MTCT) is the passing of maternal HIV-1 to the offspring during pregnancy, labor and delivery, and/or breastfeeding. HIV-1 MTCT and the evolution to pediatric AIDS are multifactorial, dynamic and variable phenotypic conditions. Both genetic and nongenetic variables can influence susceptibility to HIV-1 MTCT or the rate of progression to clinical pediatric AIDS. In this review, we summarize the current state of knowledge about the roles of genetic variations seen in host immune response genes, and those that have been independently associated, mostly through population genetics of candidate genes, with interindividual susceptibility to HIV-1 MTCT, and progression to pediatric AIDS. We examine common and rare host genetic variations at coding and noncoding polymorphisms, whether functional or not, in agonists and antagonists of the immune response, which have been implicated in HIV-1 control in battlegrounds of cell entry, replication and evolution to AIDS. Further, we point to over 380 single-nucleotide polymorphisms, mostly within the HLA super region, recently identified in unbiased genome-wide association studies of HIV replication and evolution in adults, still unexplored in the context of HIV-1 MTCT, and which are likely to also influence susceptibility to pediatric HIV-1/AIDS.
Collapse
Affiliation(s)
- Thais Louvain de Souza
- Molecular Identification & Diagnosis Unit, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - Regina Célia de Souza Campos Fernandes
- Municipal Program for the Surveillance of Sexually Transmitted Diseases & Acquired Immunodeficiency Syndrome of Campos dos Goytacazes, Brazil
- Faculty of Medicine of Campos, Campos dos Goytacazes, Brazil
| | | |
Collapse
|