1
|
Akabane M, Imaoka Y, Kawashima J, Pawlik TM. Advancing precision medicine in hepatocellular carcinoma: current challenges and future directions in liquid biopsy, immune microenvironment, single nucleotide polymorphisms, and conversion therapy. Hepat Oncol 2025; 12:2493457. [PMID: 40260687 PMCID: PMC12026093 DOI: 10.1080/20450923.2025.2493457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains a health concern characterized by heterogeneity and high mortality. Surgical resection, radiofrequency ablation, trans-arterial chemoembolization, and liver transplantation offer potentially curative treatments for early-stage disease, but recurrence remains high. Most patients present with advanced-stage HCC, where locoregional therapies are less effective, and systemic treatments-primarily multi-kinase inhibitors and immune checkpoint inhibitors-often yield limited responses. Precision medicine aims to tailor therapy to molecular and genetic profiles, yet its adoption in HCC is hindered by inter-/intra-tumoral heterogeneity and limited biopsy availability. Advances in molecular diagnostics support reintroducing tissue sampling to better characterize genetic, epigenetic, and immunological features. Liquid biopsy offers a minimally invasive method for capturing real-time tumor evolution, overcoming spatial and temporal heterogeneity. Artificial intelligence and machine learning are revolutionizing biomarker discovery, risk stratification, and treatment planning by integrating multi-omics data. Immunological factors such as tumor-infiltrating lymphocytes, natural killer cells, macrophages, and fibroblasts have emerged as determinants of HCC progression and treatment response. Conversion therapy-combining systemic agents with locoregional treatments-has showndemonstrated promise in downstaging unresectable HCC. Ongoing efforts to refine biomarker-driven approaches and optimize multi-modality regimens underscore precision medicine's potential to improve outcomes. PubMed (January 2002-February 2025) was searched for relevant studies.
Collapse
Affiliation(s)
- Miho Akabane
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Yuki Imaoka
- Division of Abdominal Transplant, Department of Surgery, Stanford University, CA, USA
| | - Jun Kawashima
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Timothy M. Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
2
|
Shinde S, Bigogno CM, Simmons A, Kathuria N, Ghose A, Apte V, Lapitan P, Makker S, Caglayan A, Boussios S. Precision oncology through next generation sequencing in hepatocellular carcinoma. Heliyon 2025; 11:e42054. [PMID: 39927143 PMCID: PMC11804570 DOI: 10.1016/j.heliyon.2025.e42054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 02/11/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary liver cancer that originates from underlying inflammation, often associated with Hepatitis B virus (HBV) or Hepatitis C virus (HCV) infections. Despite the availability of treatments, there are high rates of tumour relapse due to the development of drug resistance in infected cells. Next-Generation Sequencing (NGS) plays a crucial role in overcoming this issue by sequencing both viral and host genomes to identify mutations and genetic heterogeneity. The knowledge gained from sequencing is then utilised to develop countermeasures against these mutants through different combination therapies. Advances in NGS have led to sequencing with higher accuracy and throughput, thereby enabling personalized and effective treatments. The purpose of this article is to highlight how NGS has contributed to precision medicine in HCC and the possible integration of artificial intelligence (AI) to bolster the advancement.
Collapse
Affiliation(s)
- Sayali Shinde
- Barts Cancer Institute, Queen Mary University of London, Cancer Research UK Barts Centre, London, UK
| | - Carola Maria Bigogno
- Department of Medical Oncology, St. Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- British Oncology Network for Undergraduate Societies (BONUS), UK
| | - Ana Simmons
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- QIAGEN Manchester, Manchester, UK
| | - Nikita Kathuria
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Aruni Ghose
- Department of Medical Oncology, St. Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Department of Medical Oncology, Medway NHS Foundation Trust, Kent, UK
- Department of Medical Oncology, Mount Vernon Cancer Centre, East and North Hertfordshire NHS Trust, London, UK
| | - Vedika Apte
- University College London Medical School, London, UK
- University College London Oncology Society, London, UK
| | - Patricia Lapitan
- School of Medical Sciences, The University of Manchester, Manchester, UK
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Surrey, UK
- University College London Cancer Institute, London, UK
| | - Shania Makker
- University College London Cancer Institute, London, UK
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Barts and the London Oncology Society, London, UK
| | - Aydin Caglayan
- Department of Medical Oncology, Medway NHS Foundation Trust, Kent, UK
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Kent, UK
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King's College London, Strand, London, UK
- Kent and Medway Medical School, University of Kent, Canterbury, UK
- Faculty of Medicine, Health, and Social Care, Canterbury Christ Church University, Canterbury, UK
- AELIA Organization, 9th Km Thessaloniki–Thermi, 57001 Thessaloniki, Greece
| |
Collapse
|
3
|
Ramadan A, Kaddah M, Shousha H, El-Kassas M. Personalized treatment approaches in hepatocellular carcinoma. Arab J Gastroenterol 2025; 26:122-128. [PMID: 39765390 DOI: 10.1016/j.ajg.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/13/2024] [Accepted: 08/24/2024] [Indexed: 03/16/2025]
Abstract
Personalized medicine is an emerging field that provides novel approaches to disease's early diagnosis, prevention, treatment, and prognosis based on the patient's criteria in gene expression, environmental factors, lifestyle, and diet. To date, hepatocellular carcinoma (HCC) is a significant global health burden, with an increasing incidence and significant death rates, despite advancements in surveillance, diagnosis, and therapeutic approaches. The majority of HCC lesions develop in patients with liver cirrhosis, carrying the risks of mortality associated with both the tumor burden and the cirrhosis. New therapeutic agents involving immune checkpoint inhibitors and targeted agents have been developed for sequential or concomitant application for advanced HCC but only a tiny percentage of patients benefit from each approach. Moreover, clinicians encounter difficulties determining the most appropriate regimen for each patient. This emphasizes the need for a personalized treatment approach. In other words, patients should no longer undergo treatment based on their tumor's histology but depending on the distinct molecular targets specific to their tumor biology. However, the utilization of precision medicine in managing HCC is still challenging. This review aims to discuss the role of personalized medicine in diagnosing, managing, and defining the prognosis of HCC. We also discuss the role of liquid biopsy and their clinical applications for immunotherapies in HCC. More clinical studies are still necessary to improve the precision of biomarkers used in the treatment decision for patients with HCC.
Collapse
Affiliation(s)
- Ahmed Ramadan
- Endemic Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mona Kaddah
- Endemic Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hend Shousha
- Endemic Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed El-Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt; Liver Disease Research Center, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia.
| |
Collapse
|
4
|
Attia AM, Rezaee-Zavareh MS, Hwang SY, Kim N, Adetyan H, Yalda T, Chen PJ, Koltsova EK, Yang JD. Novel Biomarkers for Early Detection of Hepatocellular Carcinoma. Diagnostics (Basel) 2024; 14:2278. [PMID: 39451600 PMCID: PMC11507329 DOI: 10.3390/diagnostics14202278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality globally. Most patients present with late diagnosis, leading to poor prognosis. This narrative review explores novel biomarkers for early HCC detection. We conducted a comprehensive literature review analyzing protein, circulating nucleic acid, metabolite, and quantitative proteomics-based biomarkers, evaluating the advantages and limitations of each approach. While established markers like alpha-fetoprotein (AFP), des-gamma-carboxy prothrombin, and AFP-L3 remain relevant, promising candidates include circulating tumor DNA, microRNAs, long noncoding RNAs, extracellular vesicle, and metabolomic biomarkers. Multi-biomarker panels like the GALAD score, Oncoguard, and Helio liver test show promise for improved diagnostic accuracy. Non-invasive approaches like urine and gut microbiome analysis are also emerging possibilities. Integrating these novel biomarkers with current screening protocols holds significant potential for earlier HCC detection and improved patient outcomes. Future research should explore multi-biomarker panels, omics technologies, and artificial intelligence to further enhance early HCC diagnosis and management.
Collapse
Affiliation(s)
- Abdelrahman M. Attia
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.M.A.); (N.K.); (H.A.); (T.Y.)
| | | | - Soo Young Hwang
- Department of Internal Medicine, University of Maryland Medical Center, Midtown Campus, Baltimore, MD 21201, USA;
| | - Naomy Kim
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.M.A.); (N.K.); (H.A.); (T.Y.)
| | - Hasmik Adetyan
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.M.A.); (N.K.); (H.A.); (T.Y.)
| | - Tamar Yalda
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.M.A.); (N.K.); (H.A.); (T.Y.)
| | - Pin-Jung Chen
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Ekaterina K. Koltsova
- Cedars-Sinai Cancer, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.M.A.); (N.K.); (H.A.); (T.Y.)
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
5
|
Li CC, Liu M, Lee HP, Wu W, Ma L. Heterogeneity in Liver Cancer Immune Microenvironment: Emerging Single-Cell and Spatial Perspectives. Semin Liver Dis 2024; 44:133-146. [PMID: 38788780 DOI: 10.1055/s-0044-1787152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Primary liver cancer is a solid malignancy with a high mortality rate. The success of immunotherapy has shown great promise in improving patient care and highlights a crucial need to understand the complexity of the liver tumor immune microenvironment (TIME). Recent advances in single-cell and spatial omics technologies, coupled with the development of systems biology approaches, are rapidly transforming the landscape of tumor immunology. Here we review the cellular landscape of liver TIME from single-cell and spatial perspectives. We also discuss the cellular interaction networks within the tumor cell community in regulating immune responses. We further highlight the challenges and opportunities with implications for biomarker discovery, patient stratification, and combination immunotherapies.
Collapse
Affiliation(s)
- Caiyi Cherry Li
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Meng Liu
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Hsin-Pei Lee
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Wenqi Wu
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Lichun Ma
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
6
|
Zhang Y, Hu T, Wang Z, Yuan J. Clinical efficacy of precision liver resection for primary liver cancer. Am J Transl Res 2024; 16:897-904. [PMID: 38586102 PMCID: PMC10994791 DOI: 10.62347/qbbo2532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/07/2023] [Indexed: 04/09/2024]
Abstract
AIM Precision liver resection is considered the gold standard in liver surgery. Therefore, optimizing the resection of lesions and minimizing unnecessary time of liver ischemia and hypoxia have become focal points. METHODS A total of 96 patients with primary liver cancer admitted to Cangzhou People's Hospital from January 2017 and December 2019 were included in this retrospective study, and divided into two groups according to the different surgical treatment, with 50 cases in the control group (conventional hepatic resection) and 46 cases in the observation group (precision liver resection). The surgical indicators, liver function, alpha-fetoprotein (AFP), complications, and three-year follow-up results were analyzed in the two groups. RESULTS The operation time, intraoperative bleeding, hospital stay, and time of anal venting in the observation group were shorter than those in the control group (P<0.05). One week after surgery, AST, TBiL, ALT, and γ-GT levels decreased in both groups, with more significant decreases in the observation group than those in the control group (P<0.05). PCT and hs-CRP levels in the observation group were significantly lower than those in the control group (P<0.05) observation. The incidences of pleural effusion, bile leak, abdominal infection, pulmonary infection, as well as the total complication rates in the observation group were lower in the observation group than those in the control group (P<0.05). The follow-up data revealed that the observation group exhibited a lower recurrence rate observationand higher survival rate than the control group within 3 years, but these differences were not significant (P>0.05). CONCLUSION Precision liver resection can effectively treat primary liver cancer, reduce the incidence of complications, and promote patient recovery after surgery.
Collapse
Affiliation(s)
- Yunhao Zhang
- Department of Hepatobiliary and Pancreatic Minimally Invasive Surgery, Cangzhou People's Hospital Cangzhou 061000, Hebei, China
| | - Tao Hu
- Department of Hepatobiliary and Pancreatic Minimally Invasive Surgery, Cangzhou People's Hospital Cangzhou 061000, Hebei, China
| | - Zhao Wang
- Department of Hepatobiliary and Pancreatic Minimally Invasive Surgery, Cangzhou People's Hospital Cangzhou 061000, Hebei, China
| | - Jianlei Yuan
- Department of Hepatobiliary and Pancreatic Minimally Invasive Surgery, Cangzhou People's Hospital Cangzhou 061000, Hebei, China
| |
Collapse
|
7
|
Dominguez DA, Wong P, Melstrom LG. Existing and emerging biomarkers in hepatocellular carcinoma: relevance in staging, determination of minimal residual disease, and monitoring treatment response: a narrative review. Hepatobiliary Surg Nutr 2024; 13:39-55. [PMID: 38322200 PMCID: PMC10839735 DOI: 10.21037/hbsn-22-526] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/15/2023] [Indexed: 02/08/2024]
Abstract
Background and Objective With the development of novel active systemic therapies, the landscape of hepatocellular carcinoma (HCC) management is rapidly changing. However, HCC lacks sensitive and specific biomarkers to predict prognosis, monitor for minimal residual disease after locoregional therapy, and predict treatment response. In this review, we aim to summarize the best supporting evidence for refining existing, and development of novel biomarkers for staging, prognosis, determination of minimal residual disease and monitoring treatment response in HCC, focusing on those with evidence in clinical trials. Methods PubMed and Embase databases were searched using the keywords; hepatocellular carcinoma, biomarker, minimal residual disease, surveillance, prognosis, staging, alpha-fetoprotein (AFP), liquid biopsy, treatment response, adjuvant, immunotherapy. Relevant clinical studies were included. Key Content and Findings AFP remains the major workhorse as the most widely used biomarker in HCC, however, its lack of wide applicability due to the high proportion of patients with HCC who are AFP negative, limits its value throughout all stages of HCC management. Significant work has been done to combine AFP with other clinical and serologic factors to increase its accuracy and utility as a biomarkers. However, it is likely that other more novel biomarkers such as those obtained through liquid biopsy will provide the prognostic power necessary for applications such as detecting recurrence and predicting treatment response. Liquid biopsy provides not only a wealth of potential biomarkers including circulating tumor cells and cell-free RNA/DNA, but also the ability to examine the mutational characteristics of the tumor with next generation sequencing. While early evidence supports the potential impact of many new biomarkers, validation in large clinical trials is lacking. Conclusions This review highlights the paucity of sensitive and specific, widely applicable biomarkers, throughout all phases of management of HCC and summarizes evidence on biomarkers currently in use, as well as those in development and validation. Inclusion of biomarker analysis through clinical trials in HCC is critical to development of optimal therapeutic regimens, and improve patient outcomes.
Collapse
Affiliation(s)
- Dana A. Dominguez
- Department of Surgical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Paul Wong
- University of California, San Francisco, San Francisco, CA, USA
| | - Laleh G. Melstrom
- Department of Surgical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
8
|
Gillman R, Field MA, Schmitz U, Karamatic R, Hebbard L. Identifying cancer driver genes in individual tumours. Comput Struct Biotechnol J 2023; 21:5028-5038. [PMID: 37867967 PMCID: PMC10589724 DOI: 10.1016/j.csbj.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
Cancer is a heterogeneous disease with a strong genetic component making it suitable for precision medicine approaches aimed at identifying the underlying molecular drivers within a tumour. Large scale population-level cancer sequencing consortia have identified many actionable mutations common across both cancer types and sub-types, resulting in an increasing number of successful precision medicine programs. Nonetheless, such approaches fail to consider the effects of mutations unique to an individual patient and may miss rare driver mutations, necessitating personalised approaches to driver-gene prioritisation. One approach is to quantify the functional importance of individual mutations in a single tumour based on how they affect the expression of genes in a gene interaction network (GIN). These GIN-based approaches can be broadly divided into those that utilise an existing reference GIN and those that construct de novo patient-specific GINs. These single-tumour approaches have several limitations that likely influence their results, such as use of reference cohort data, network choice, and approaches to mathematical approximation, and more research is required to evaluate the in vitro and in vivo applicability of their predictions. This review examines the current state of the art methods that identify driver genes in single tumours with a focus on GIN-based driver prioritisation.
Collapse
Affiliation(s)
- Rhys Gillman
- Department of Biomedical Sciences and Molecular and Cell Biology, College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, Queensland, Australia
| | - Matt A. Field
- Department of Biomedical Sciences and Molecular and Cell Biology, College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, Queensland, Australia
- Immunogenomics Lab, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Ulf Schmitz
- Department of Biomedical Sciences and Molecular and Cell Biology, College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, Queensland, Australia
| | - Rozemary Karamatic
- Gastroenterology and Hepatology, Townsville University Hospital, PO Box 670, Townsville, Queensland 4810, Australia
- College of Medicine and Dentistry, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Lionel Hebbard
- Department of Biomedical Sciences and Molecular and Cell Biology, College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, Queensland, Australia
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia
- Australian Institute for Tropical Health and Medicine, Townsville, Queensland, Australia
| |
Collapse
|
9
|
Dahl E, Villwock S, Habenberger P, Choidas A, Rose M, Klebl BM. White Paper: Mimetics of Class 2 Tumor Suppressor Proteins as Novel Drug Candidates for Personalized Cancer Therapy. Cancers (Basel) 2022; 14:cancers14184386. [PMID: 36139547 PMCID: PMC9496810 DOI: 10.3390/cancers14184386] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary A concept is presented for a new therapeutic approach, still in its early stages, which focuses on the phenotypic mimicry (“mimesis”) of proteins encoded by highly disease-relevant class 2 tumor suppressor genes that are silenced by DNA promoter methylation. Proteins derived from tumor suppressor genes are usually considered control systems of cells against oncogenic properties. Thus they represent the brakes in the “car-of-life.” Restoring this “brake function” in tumors by administering mimetic drugs may have a significant therapeutic effect. The proposed approach could thus open up a new, hitherto unexploited area of research for the development of anticancer drugs for difficult-to-treat cancers. Abstract The aim of our proposed concept is to find new target structures for combating cancers with unmet medical needs. This, unfortunately, still applies to the majority of the clinically most relevant tumor entities such as, for example, liver cancer, pancreatic cancer, and many others. Current target structures almost all belong to the class of oncogenic proteins caused by tumor-specific genetic alterations, such as activating mutations, gene fusions, or gene amplifications, often referred to as cancer “driver alterations” or just “drivers.” However, restoring the lost function of tumor suppressor genes (TSGs) could also be a valid approach to treating cancer. TSG-derived proteins are usually considered as control systems of cells against oncogenic properties; thus, they represent the brakes in the “car-of-life.” Restoring these tumor-defective brakes by gene therapy has not been successful so far, with a few exceptions. It can be assumed that most TSGs are not being inactivated by genetic alteration (class 1 TSGs) but rather by epigenetic silencing (class 2 TSGs or short “C2TSGs”). Reactivation of C2TSGs in cancer therapy is being addressed by the use of DNA demethylating agents and histone deacetylase inhibitors which act on the whole cancer cell genome. These epigenetic therapies have neither been particularly successful, probably because they are “shotgun” approaches that, although acting on C2TSGs, may also reactivate epigenetically silenced oncogenic sequences in the genome. Thus, new strategies are needed to exploit the therapeutic potential of C2TSGs, which have also been named DNA methylation cancer driver genes or “DNAme drivers” recently. Here we present a concept for a new translational and therapeutic approach that focuses on the phenotypic imitation (“mimesis”) of proteins encoded by highly disease-relevant C2TSGs/DNAme drivers. Molecular knowledge on C2TSGs is used in two complementary approaches having the translational concept of defining mimetic drugs in common: First, a concept is presented how truncated and/or genetically engineered C2TSG proteins, consisting solely of domains with defined tumor suppressive function can be developed as biologicals. Second, a method is described for identifying small molecules that can mimic the effect of the C2TSG protein lost in the cancer cell. Both approaches should open up a new, previously untapped discovery space for anticancer drugs.
Collapse
Affiliation(s)
- Edgar Dahl
- Institute of Pathology, Medical Faculty, RWTH Aachen University, D-52074 Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), D-52074 Aachen, Germany
- Correspondence:
| | - Sophia Villwock
- Institute of Pathology, Medical Faculty, RWTH Aachen University, D-52074 Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), D-52074 Aachen, Germany
| | - Peter Habenberger
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Straße 15, D-44227 Dortmund, Germany
| | - Axel Choidas
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Straße 15, D-44227 Dortmund, Germany
| | - Michael Rose
- Institute of Pathology, Medical Faculty, RWTH Aachen University, D-52074 Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), D-52074 Aachen, Germany
| | - Bert M. Klebl
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Straße 15, D-44227 Dortmund, Germany
| |
Collapse
|
10
|
Lasagni S, Leonardi F, Pivetti A, Di Marco L, Ravaioli F, Serenari M, Gitto S, Critelli RM, Milosa F, Romanzi A, Mancarella S, Dituri F, Riefolo M, Catellani B, Magistri P, Romagnoli D, Celsa C, Enea M, de Maria N, Schepis F, Colecchia A, Cammà C, Cescon M, d’Errico A, di Benedetto F, Giannelli G, Martinez-Chantar ML, Villa E. Endothelial angiopoietin-2 overexpression in explanted livers identifies subjects at higher risk of recurrence of hepatocellular carcinoma after liver transplantation. Front Oncol 2022; 12:960808. [PMID: 36158651 PMCID: PMC9493368 DOI: 10.3389/fonc.2022.960808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background Though the precise criteria for accessing LT are consistently being applied, HCC recurrence (HCC-R_LT) still affects more than 15% of the patients. We analyzed the clinical, histopathological, and biological features of patients with HCC to identify the predictive factors associated with cancer recurrence and survival after LT. Methods We retrospectively analyzed 441 patients with HCC who underwent LT in our center. Overall, 70 (15.8%) of them developed HCC-R_LT. We matched them by age at transplant and etiology with 70 non-recurrent patients. A comparable cohort from the Liver Transplant Centre of Bologna served as validation. The clinical and biochemical characteristics and pre-LT criteria (Milan, Metroticket, Metroticket_AFP, and AFP model) were evaluated. Histological analysis and immunohistochemistry for angiopoietin-2 in the tumor and non-tumor tissue of explanted livers were performed. Patients’ follow-up was until death, last clinical evaluation, or 31 December 2021. In patients with HCC-R_LT, the date of diagnosis of recurrence and anatomical site has been reported; if a biopsy of recurrence was available, histologic and immunohistochemical analyses were also performed. Results Patients were followed up for a mean period of 62.7 ± 54.7 months (median, 39 months). A higher risk of HCC-R_LT was evident for factors related indirectly (AFP) or directly (endothelial angiopoietin-2, microvascular invasion) to biological HCC aggressiveness. In multivariate analysis, only angiopoietin-2 expression was independently associated with recurrence. Extremely high levels of endothelial angiopoietin-2 expression were also found in hepatic recurrence and all different metastatic locations. In univariate analysis, MELD, Metroticket_AFP Score, Edmondson–Steiner grade, microvascular invasion, and endothelial angiopoietin-2 were significantly related to survival. In multivariate analysis, angiopoietin-2 expression, Metroticket_AFP score, and MELD (in both training and validation cohorts) independently predicted mortality. In time-dependent area under receiver operating characteristic curve analysis, the endothelial angiopoietin-2 expression had the highest specificity and sensitivity for recurrence (AUC 0.922, 95% CI 0.876–0.962, p < 0.0001). Conclusions Endothelial angiopoietin-2 expression is a powerful independent predictor of post-LT tumor recurrence and mortality, highlighting the fundamental role of tumor biology in defining the patients’ prognosis after liver transplantation. The great advantage of endothelial angiopoietin-2 is that it is evaluable in HCC biopsy before LT and could drive a patient’s priority on the waiting list.
Collapse
Affiliation(s)
- Simone Lasagni
- Gastroenterology Unit, Department of Medical Specialties, University of Modena and Reggio Emilia and Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Filippo Leonardi
- Gastroenterology and Transplant Hepatology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Alessandra Pivetti
- Gastroenterology Unit, Department of Medical Specialties, University of Modena and Reggio Emilia and Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Lorenza Di Marco
- Gastroenterology Unit, Department of Medical Specialties, University of Modena and Reggio Emilia and Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Federico Ravaioli
- Gastroenterology Unit, Department of Medical Specialties, University of Modena and Reggio Emilia and Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Matteo Serenari
- Liver Transplant Center, University of Bologna, Balogna, Italy
| | - Stefano Gitto
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Rosina Maria Critelli
- Gastroenterology Unit, Department of Medical Specialties, University of Modena and Reggio Emilia and Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Fabiola Milosa
- Gastroenterology Unit, Department of Medical Specialties, University of Modena and Reggio Emilia and Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Adriana Romanzi
- Gastroenterology Unit, Department of Medical Specialties, University of Modena and Reggio Emilia and Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Serena Mancarella
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, Italy
| | - Francesco Dituri
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, Italy
| | - Mattia Riefolo
- Pathology Unit, Istituto di ricovero e cura a carattere scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Barbara Catellani
- Liver Transplant Center, University of Modena and Reggio Emilia and Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Paolo Magistri
- Liver Transplant Center, University of Modena and Reggio Emilia and Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Dante Romagnoli
- Gastroenterology Unit, Department of Medical Specialties, University of Modena and Reggio Emilia and Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Ciro Celsa
- Section of Gastroenterology and Hepatology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
- Department of Surgical, Oncological and Oral Sciences (Di.Chir.On.S.), University of Palermo, Palermo, Italy
| | - Marco Enea
- Internal Medicine and Medical Specialties, Department of Health Promotion, Mother and Child Care (PROMISE) University of Palermo, Palermo, Spain
| | - Nicola de Maria
- Gastroenterology Unit, Department of Medical Specialties, University of Modena and Reggio Emilia and Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Filippo Schepis
- Gastroenterology Unit, Department of Medical Specialties, University of Modena and Reggio Emilia and Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Antonio Colecchia
- Gastroenterology Unit, Department of Medical Specialties, University of Modena and Reggio Emilia and Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Calogero Cammà
- Section of Gastroenterology and Hepatology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Matteo Cescon
- Liver Transplant Center, University of Bologna, Balogna, Italy
| | - Antonietta d’Errico
- Pathology Unit, Istituto di ricovero e cura a carattere scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Fabrizio di Benedetto
- Liver Transplant Center, University of Modena and Reggio Emilia and Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, Italy
| | - Maria Luz Martinez-Chantar
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBERehd “Instituto de Salud Carlos III”), Derio, Spain
| | - Erica Villa
- Gastroenterology Unit, Department of Medical Specialties, University of Modena and Reggio Emilia and Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
- *Correspondence: Erica Villa,
| |
Collapse
|
11
|
Yan T, Yu L, Zhang N, Peng C, Su G, Jing Y, Zhang L, Wu T, Cheng J, Guo Q, Shi X, Lu Y. The advanced development of molecular targeted therapy for hepatocellular carcinoma. Cancer Biol Med 2022. [PMID: 35699406 DOI: 10.20892/j.issn.2095-3941.2021.0661.pmid:35699406;pmcid:pmc9257319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC), one of the most common malignant tumors in China, severely threatens the life and health of patients. In recent years, precision medicine, clinical diagnoses, treatments, and innovative research have led to important breakthroughs in HCC care. The discovery of new biomarkers and the promotion of liquid biopsy technologies have greatly facilitated the early diagnosis and treatment of HCC. Progress in targeted therapy and immunotherapy has provided more choices for precise HCC treatment. Multiomics technologies, such as genomics, transcriptomics, and metabolomics, have enabled deeper understanding of the occurrence and development mechanisms, heterogeneity, and genetic mutation characteristics of HCC. The continued promotion and accurate typing of HCC, accurate guidance of treatment, and accurate prognostication have provided more treatment opportunities and prolonged survival timelines for patients with HCC. Innovative HCC research providing an in-depth understanding of the biological characteristics of HCC will be translated into accurate clinical practices for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Tao Yan
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Lingxiang Yu
- The Second Department of Hepatobiliary Surgery, Senior Department of Hepatology, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Ning Zhang
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Caiyun Peng
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Guodong Su
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Yi Jing
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Linzhi Zhang
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Tong Wu
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Jiamin Cheng
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Qian Guo
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | | | - Yinying Lu
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
- National Clinical Medical Research Center for Infectious Diseases, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| |
Collapse
|
12
|
Yan T, Yu L, Zhang N, Peng C, Su G, Jing Y, Zhang L, Wu T, Cheng J, Guo Q, Shi X, Lu Y. The advanced development of molecular targeted therapy for hepatocellular carcinoma. Cancer Biol Med 2022; 19:j.issn.2095-3941.2021.0661. [PMID: 35699406 PMCID: PMC9257319 DOI: 10.20892/j.issn.2095-3941.2021.0661] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/18/2022] [Indexed: 11/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC), one of the most common malignant tumors in China, severely threatens the life and health of patients. In recent years, precision medicine, clinical diagnoses, treatments, and innovative research have led to important breakthroughs in HCC care. The discovery of new biomarkers and the promotion of liquid biopsy technologies have greatly facilitated the early diagnosis and treatment of HCC. Progress in targeted therapy and immunotherapy has provided more choices for precise HCC treatment. Multiomics technologies, such as genomics, transcriptomics, and metabolomics, have enabled deeper understanding of the occurrence and development mechanisms, heterogeneity, and genetic mutation characteristics of HCC. The continued promotion and accurate typing of HCC, accurate guidance of treatment, and accurate prognostication have provided more treatment opportunities and prolonged survival timelines for patients with HCC. Innovative HCC research providing an in-depth understanding of the biological characteristics of HCC will be translated into accurate clinical practices for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Tao Yan
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Lingxiang Yu
- The Second Department of Hepatobiliary Surgery, Senior Department of Hepatology, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Ning Zhang
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Caiyun Peng
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Guodong Su
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Yi Jing
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Linzhi Zhang
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Tong Wu
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Jiamin Cheng
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Qian Guo
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | | | - Yinying Lu
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
- National Clinical Medical Research Center for Infectious Diseases, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| |
Collapse
|
13
|
Precision Medicine for Hepatocellular Carcinoma: Clinical Perspective. J Pers Med 2022; 12:jpm12020149. [PMID: 35207638 PMCID: PMC8879044 DOI: 10.3390/jpm12020149] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the major malignant diseases worldwide, characterized by growing incidence and high mortality rates despite apparent improvements in surveillance programs, diagnostic and treatment procedures, molecular therapies, and numerous research initiatives. Most HCCs occur in patients with liver cirrhosis, and the competing mortality risks from the tumor and the cirrhosis should be considered. Presently, previously identified risk factors, such as hepatitis virus infection, hepatic inflammation and fibrosis, and metabolic syndrome, may be used as chemoprevention targets. The application of precision medicine for HCC management challenges the one-size-fits-all concept; moreover, patients should no longer be treated entirely according to the histology of their tumor but based on molecular targets specific to their tumor biology. Next-generation sequencing emphasizes HCC molecular heterogeneity and aids our comprehension of possible vulnerabilities that can be exploited. Moreover, genetic sequencing as part of a precision medicine concept may work as a promising tool for postoperative cancer monitoring. The use of genetic and epigenetic markers to identify therapeutic vulnerability could change the diagnosis and treatment of HCC, which so far was based on Barcelona clinic liver cancer (BCLC) staging. In daily clinical practice, the shift from a stage-oriented to a therapeutic-oriented approach is needed to direct the choice of HCC treatment toward the potentially most effective option on an individual basis. The important factor in precision medicine is the promotion of patient management based on the individual approach, knowing that the final decision must be approved by a multidisciplinary expert team.
Collapse
|
14
|
Killen C. Welcome to Volume 7 of Hepatic Oncology. Hepat Oncol 2020; 7:HEP14. [PMID: 32273972 PMCID: PMC7137179 DOI: 10.2217/hep-2020-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Caitlin Killen
- Future Science Group, Unitec House, 2 Albert Pl, Finchley N3 1QB, London
| |
Collapse
|
15
|
Dominguez DA, Wang XW. Impact of Next-Generation Sequencing on Outcomes in Hepatocellular Carcinoma: How Precise Are We Really? J Hepatocell Carcinoma 2020; 7:33-37. [PMID: 32257970 PMCID: PMC7090189 DOI: 10.2147/jhc.s217948] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/12/2020] [Indexed: 12/19/2022] Open
Abstract
Advances in Next-Generation Sequencing (NGS) technology have led to a rapid expansion in the application of “precision medicine,” attempting to personalize therapies and improve outcomes for cancer patients. While these technologies carry great promise, evidence for translation to patient outcomes is lacking. This is especially true in hepatocellular carcinoma (HCC), where multiple factors have hampered efforts to develop effective targeted therapies. We sought to review how application of NGS in HCC has translated to patient outcomes and what barriers stand in the way of further progress.
Collapse
Affiliation(s)
- Dana A Dominguez
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.,Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|