1
|
Nepal C, O’Rourke CJ, Oliveira DVNP, Taranta A, Shema S, Gautam P, Calderaro J, Barbour A, Raggi C, Wennerberg K, Wang XW, Lautem A, Roberts LR, Andersen JB. Genomic perturbations reveal distinct regulatory networks in intrahepatic cholangiocarcinoma. Hepatology 2018; 68:949-963. [PMID: 29278425 PMCID: PMC6599967 DOI: 10.1002/hep.29764] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/14/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022]
Abstract
UNLABELLED Intrahepatic cholangiocarcinoma remains a highly heterogeneous malignancy that has eluded effective patient stratification to date. The extent to which such heterogeneity can be influenced by individual driver mutations remains to be evaluated. Here, we analyzed genomic (whole-exome sequencing, targeted exome sequencing) and epigenomic data from 496 patients and used the three most recurrently mutated genes to stratify patients (IDH, KRAS, TP53, "undetermined"). Using this molecular dissection approach, each subgroup was determined to possess unique mutational signature preferences, comutation profiles, and enriched pathways. High-throughput drug repositioning in seven patient-matched cell lines, chosen to reflect the genetic alterations specific for each patient group, confirmed in silico predictions of subgroup-specific vulnerabilities linked to enriched pathways. Intriguingly, patients lacking all three mutations ("undetermined") harbored the most extensive structural alterations, while isocitrate dehydrogenase mutant tumors displayed the most extensive DNA methylome dysregulation, consistent with previous findings. CONCLUSION Stratification of intrahepatic cholangiocarcinoma patients based on occurrence of mutations in three classifier genes (IDH, KRAS, TP53) revealed unique oncogenic programs (mutational, structural, epimutational) that influence pharmacologic response in drug repositioning protocols; this genome dissection approach highlights the potential of individual mutations to induce extensive molecular heterogeneity and could facilitate advancement of therapeutic response in this dismal disease. (Hepatology 2018).
Collapse
Affiliation(s)
- Chirag Nepal
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Colm J. O’Rourke
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Douglas VNP Oliveira
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Andrzej Taranta
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Steven Shema
- Center for Cancer Research Genomics Core, National Cancer Institute, NIH Bethesda, Maryland 20892, USA
| | - Prson Gautam
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00290 Helsinki, Finland
| | - Julien Calderaro
- Assistance Publique-Hôpitaux de Paris, Department of Pathology, CHU Henri Mondor, F-94000, Créteil, France,Faculté de Médecine, Université Paris-Est Créteil, Créteil, France,Inserm U955 Equipe 18, Institut Mondor de Recherche Biomédicale, Créteil, France
| | | | - Chiara Raggi
- Center for Autoimmune Liver Diseases, IRCCS Istituto Clinico Humanitas, 20089 Rozzano (MI), Italy
| | - Krister Wennerberg
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00290 Helsinki, Finland
| | - Xin W. Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Anja Lautem
- Department of General, Visceral and Transplantation Surgery, University Medical Center Mainz, Mainz, 55131, Germany
| | - Lewis R. Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jesper B. Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark,Corresponding author: Jesper B Andersen, Biotech Research and Innovation Centre (BRIC) Department of Health and Medical Sciences University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N Denmark, Phone: +45 35325834,
| |
Collapse
|
2
|
Quintavalle C, Burmeister K, Piscuoglio S, Quagliata L, Karamitopoulou E, Sepe R, Fusco A, Terracciano LM, Andersen JB, Pallante P, Matter MS. High mobility group A1 enhances tumorigenicity of human cholangiocarcinoma and confers resistance to therapy. Mol Carcinog 2017; 56:2146-2157. [PMID: 28467612 DOI: 10.1002/mc.22671] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/01/2017] [Indexed: 12/16/2022]
Abstract
High mobility group A1 (HMGA1) protein has been described to play an important role in numerous types of human carcinoma. By the modulation of several target genes HMGA1 promotes proliferation and epithelial-mesenchymal transition of tumor cells. However, its role in cholangiocarcinoma (CCA) has not been addressed yet. Therefore, we determined HMGA1 mRNA expression in CCA samples in a transcriptome array (n = 104) and a smaller cohort (n = 13) by qRT-PCR. Protein expression was evaluated by immunohistochemistry in a tissue microarray (n = 67). In addition, we analyzed changes in cell proliferation, colony formation, response to gemcitabine treatment, and target gene expression after modulation of HMGA1 expression in CCA cell lines. mRNA levels of HMGA1 were found to be upregulated in 15-62% depending on the cohort analyzed. Immunohistochemistry showed HMGA1 overexpression in 51% of CCA specimens. Integration with clinico-pathological data revealed that high HMGA1 expression was associated with reduced time to recurrence and a positive lymph node status in extrahepatic cholangiocellular carcinoma. In vitro experiments showed that overexpression of HMGA1 in CCA cell lines promoted cell proliferation, whereas its suppression reduced growth rate. HMGA1 further promoted colony formation in an anchorage independent growth and conferred resistance to gemcitabine treatment. Finally, HMGA1 modulated the expression of two genes involved in CCA carcinogenesis, iNOS and ERBB2. In conclusion, our findings indicate that HMGA1 expression is increased in a substantial number of CCA specimens. HMGA1 further promotes CCA tumorigenicity and confers resistance to chemotherapy.
Collapse
Affiliation(s)
- Cristina Quintavalle
- Division of Molecular Pathology, Institute of Pathology, University of Basel, Basel, Switzerland
| | - Katharina Burmeister
- Division of Molecular Pathology, Institute of Pathology, University of Basel, Basel, Switzerland
| | - Salvatore Piscuoglio
- Division of Molecular Pathology, Institute of Pathology, University of Basel, Basel, Switzerland
| | - Luca Quagliata
- Division of Molecular Pathology, Institute of Pathology, University of Basel, Basel, Switzerland
| | - Eva Karamitopoulou
- Translational Research Unit, Institute of Pathology, University of Bern, Bern, Switzerland.,Division of Clinical Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Romina Sepe
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS) "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), Napoli, Italy
| | - Alfredo Fusco
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS) "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), Napoli, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Luigi M Terracciano
- Division of Molecular Pathology, Institute of Pathology, University of Basel, Basel, Switzerland
| | - Jesper B Andersen
- Department of Health and Medical Sciences, Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Pierlorenzo Pallante
- Division of Molecular Pathology, Institute of Pathology, University of Basel, Basel, Switzerland.,Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS) "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), Napoli, Italy
| | - Matthias S Matter
- Division of Molecular Pathology, Institute of Pathology, University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
El‐Khoueiry A. Uncommon Hepatobiliary Tumors. TEXTBOOK OF UNCOMMON CANCER 2017:444-457. [DOI: 10.1002/9781119196235.ch30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Scarzello AJ, Jiang Q, Back T, Dang H, Hodge D, Hanson C, Subleski J, Weiss JM, Stauffer JK, Chaisaingmongkol J, Rabibhadana S, Ruchirawat M, Ortaldo J, Wang XW, Norris PS, Ware CF, Wiltrout RH. LTβR signalling preferentially accelerates oncogenic AKT-initiated liver tumours. Gut 2016; 65. [PMID: 26206664 PMCID: PMC5036232 DOI: 10.1136/gutjnl-2014-308810] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The relative contributions of inflammatory signalling and sequential oncogenic dysregulation driving liver cancer pathogenesis remain incompletely understood. Lymphotoxin-β receptor (LTβR) signalling is critically involved in hepatitis and liver tumorigenesis. Therefore, we explored the interdependence of inflammatory lymphotoxin signalling and specific oncogenic pathways in the progression of hepatic cancer. DESIGN Pathologically distinct liver tumours were initiated by hydrodynamic transfection of oncogenic V-Akt Murine Thymoma Viral Oncogene Homolog 1 (AKT)/β-catenin or AKT/Notch expressing plasmids. To investigate the relationship of LTβR signalling and specific oncogenic pathways, LTβR antagonist (LTβR-Fc) or agonist (anti-LTβR) were administered post oncogene transfection. Initiated livers/tumours were investigated for changes in oncogene expression, tumour proliferation, progression, latency and pathology. Moreover, specific LTβR-mediated molecular events were investigated in human liver cancer cell lines and through transcriptional analyses of samples from patients with intrahepatic cholangiocarcinoma (ICC). RESULTS AKT/β-catenin-transfected livers displayed increased expression of LTβ and LTβR, with antagonism of LTβR signalling reducing tumour progression and enhancing survival. Conversely, enforced LTβR-activation of AKT/β-catenin-initiated tumours induced robust increases in proliferation and progression of hepatic tumour phenotypes in an AKT-dependent manner. LTβR-activation also rapidly accelerated ICC progression initiated by AKT/Notch, but not Notch alone. Moreover, LTβR-accelerated development coincides with increases of Notch, Hes1, c-MYC, pAKT and β-catenin. We further demonstrate LTβR signalling in human liver cancer cell lines to be a regulator of Notch, pAKTser473 and β-catenin. Transcriptome analysis of samples from patients with ICC links increased LTβR network expression with poor patient survival, increased Notch1 expression and Notch and AKT/PI3K signalling. CONCLUSIONS Our findings link LTβR and oncogenic AKT signalling in the development of ICC.
Collapse
Affiliation(s)
- Anthony J Scarzello
- Cancer and Inflamation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Qun Jiang
- Cancer and Inflamation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Timothy Back
- Cancer and Inflamation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Hien Dang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Deborah Hodge
- Cancer and Inflamation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Charlotte Hanson
- Cancer and Inflamation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Jeffrey Subleski
- Cancer and Inflamation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Jonathan M Weiss
- Cancer and Inflamation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Jimmy K Stauffer
- Cancer and Inflamation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | | | | | | | - John Ortaldo
- Cancer and Inflamation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Paula S Norris
- Infectious and Inflammatory Diseases Research Center, Sanford Burnham Medical Research Institute, La Jolla, California, USA
| | - Carl F Ware
- Infectious and Inflammatory Diseases Research Center, Sanford Burnham Medical Research Institute, La Jolla, California, USA
| | - Robert H Wiltrout
- Cancer and Inflamation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
5
|
Javle M, Bekaii-Saab T, Jain A, Wang Y, Kelley RK, Wang K, Kang HC, Catenacci D, Ali S, Krishnan S, Ahn D, Bocobo AG, Zuo M, Kaseb A, Miller V, Stephens PJ, Meric-Bernstam F, Shroff R, Ross J. Biliary cancer: Utility of next-generation sequencing for clinical management. Cancer 2016; 122:3838-3847. [PMID: 27622582 DOI: 10.1002/cncr.30254] [Citation(s) in RCA: 300] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/29/2016] [Accepted: 07/11/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Biliary tract cancers (BTCs) typically present at an advanced stage, and systemic chemotherapy is often of limited benefit. METHODS Hybrid capture-based comprehensive genomic profiling (CGP) was performed for 412 intrahepatic cholangiocarcinomas (IHCCAs), 57 extrahepatic cholangiocarcinomas (EHCCAs), and 85 gallbladder carcinomas (GBCAs). The mutational profile was correlated with the clinical outcome of standard and experimental therapies for 321 patients. Clinical variables, detected mutations, and administered therapies were correlated with overall survival (OS) in a Cox regression model. RESULTS The most frequent genetic aberrations (GAs) observed were tumor protein 53 (TP53; 27%), cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B; 27%), KRAS (22%), AT-rich interactive domain-containing protein 1A (ARID1A; 18%), and isocitrate dehydrogenase 1 (IDH1; 16%) in IHCCA; KRAS (42%), TP53 (40%), CDKN2A/B (17%), and SMAD4 (21%) in EHCCA; and TP53 (59%), CDKN2A/B (19%), ARID1A (13%), and ERBB2 (16%) in GBCA. Fibroblast growth factor receptor (FGFR; 11%) and IDH mutations (20%) were mostly limited to IHCCA but appeared to be mutually exclusive. In the IHCCA group, TP53 and KRAS mutations were associated significantly with poor OS, whereas FGFR2 mutations were associated with improved OS (P = .001), a younger age at onset, and female sex. IDH1/2 mutations were not prognostic. In a multivariate model, the effects of TP53 and FGFR GAs remained significant (P < .05). Patients with FGFR GAs had superior OS with FGFR-targeted therapy versus standard regimens (P = .006). Targeted therapy in IHCCA was associated with a numerical OS improvement (P = .07). CONCLUSIONS This is the largest clinically annotated data set of BTC cases with CGP and indicates the potential of CGP for improving outcomes. CGP should be strongly considered in the management of BTC patients. Cancer 2016;122:3838-3847. © 2016 American Cancer Society.
Collapse
Affiliation(s)
- Milind Javle
- Department of Gastrointestinal (GI) Medical Oncology, UT-MD Anderson Cancer Center, Houston, Texas
| | - Tanios Bekaii-Saab
- Division of Medical Oncology, Ohio State University Medical Center, Columbus, Ohio
| | - Apurva Jain
- Department of Gastrointestinal (GI) Medical Oncology, UT-MD Anderson Cancer Center, Houston, Texas
| | - Ying Wang
- Department of Bioinformatics & Computational Biology, UT-MD Anderson Cancer Center, Houston, Texas
| | - Robin Katie Kelley
- Department of Medicine (Hematology/Oncology), UCSF, San Francisco, California
| | - Kai Wang
- Foundation Medicine, Inc., Cambridge, Massachusetts
| | - Hyunseon C Kang
- Department of Diagnostic Radiology, UT-MD Anderson Cancer Center, Houston, Texas
| | - Daniel Catenacci
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center, Chicago, Illinois
| | - Siraj Ali
- Foundation Medicine, Inc., Cambridge, Massachusetts
| | - Sunil Krishnan
- Department of Radiation Oncology, UT-MD Anderson Cancer Center, Houston, Texas
| | - Daniel Ahn
- Division of Medical Oncology, Ohio State University Medical Center, Columbus, Ohio
| | - Andrea Grace Bocobo
- Department of Medicine (Hematology/Oncology), UCSF, San Francisco, California
| | - Mingxin Zuo
- Department of Gastrointestinal (GI) Medical Oncology, UT-MD Anderson Cancer Center, Houston, Texas
| | - Ahmed Kaseb
- Department of Gastrointestinal (GI) Medical Oncology, UT-MD Anderson Cancer Center, Houston, Texas
| | | | | | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, UT-MD Anderson Cancer Center, Houston, Texas
| | - Rachna Shroff
- Department of Gastrointestinal (GI) Medical Oncology, UT-MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey Ross
- Department of Pathology, Albany Medical College Albany, New York
| |
Collapse
|
6
|
Pauff JM, Goff LW. Current Progress in Immunotherapy for the Treatment of Biliary Cancers. J Gastrointest Cancer 2016; 47:351-357. [DOI: 10.1007/s12029-016-9867-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Shen ED, Liu B, Yu XS, Xiang ZF, Huang HY. The effects of miR-1207-5p expression in peripheral blood on cisplatin-based chemosensitivity of primary gallbladder carcinoma. Onco Targets Ther 2016; 9:3633-42. [PMID: 27382301 PMCID: PMC4920227 DOI: 10.2147/ott.s101310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the association between miR-1207-5p expression in peripheral blood and the chemosensitivity of primary gallbladder carcinoma (PGBC). METHODS A total of 85 patients with PGBC undergoing preoperative chemotherapy were divided into effective (n=18) and ineffective (n=67) groups. Another 70 healthy individuals were selected as the control group. An miR-1207-5p mimic (mimic group), an inhibitor (inhibitor group), and a negative control (NC group) sequence were transfected into human gallbladder carcinoma GBC-SD cells. Real-time quantitative polymerase chain reaction was used to determine miR-1207-5p expression. After 48 hours of cisplatin treatment, CCK-8 method was used to detect cell proliferation and flow cytometry were performed to examine cell apoptosis. RESULTS miR-1207-5p expression in peripheral blood was significantly associated with tumor node metastasis staging of PGBC (P<0.05). Before chemotherapy, miR-1207-5p expression in patients was higher than in healthy individuals (P<0.05). After chemotherapy, the effective group had lower miR-1207-5p expression than the ineffective group (P<0.05). The rates of positive expression of Ki67 protein in the effective group were significantly lower than those in the ineffective group (P<0.05). Receiver operating characteristic curves showed that the area under curve, sensitivity, and specificity of miR-1207-5p used to diagnose PGBC were 0.898, 77.6%, and 97.1% at a cutoff of 1.470, respectively. After 48 hours of cisplatin treatment, compared with the NC group and nontransfected (non-T) group, the mimic group had decreased rates of cell inhibition and apoptosis, but the inhibitor group had increased rates (all P<0.05). The expression levels of caspase3 protein were increased in the mimic group and decreased in the inhibitor group. Cell survival rates in the mimic group at different time points after cisplatin treatment were significantly higher than the corresponding rates in the NC and non-T groups, whereas the cell survival rates in the inhibitor group were significantly lower than the rates in the NC and non-T groups (all P<0.05). The concentration and action time of cisplatin were negatively associated with the cell survival rate in each group (all P<0.05). CONCLUSION Cisplatin-based chemosensitivity of PGBC increased as expression of miR-1207-5p in peripheral blood declined. Thus, miR-1207-5p appears to be a promising and novel chemosensitizer for the treatment of PGBC.
Collapse
Affiliation(s)
- Er-Dong Shen
- Department of Oncology, The First People's Hospital of Yueyang, Yueyang
| | - Bo Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha
| | - Xin-Shuang Yu
- Department of Radiotherapy, Qianfou Mount Hospital of Shandong Province, Jinan
| | - Zhen-Fei Xiang
- Department of Radiotherapy, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo
| | - Hui-Yun Huang
- Department of Dermatology, The First People's Hospital of Yueyang, Yueyang, People's Republic of China
| |
Collapse
|
8
|
Wang J, Li A, Jin M, Zhang F, Li X. Dual-modality imaging demonstrates the enhanced antitumoral effect of herpes simplex virus-thymidine kinase/ganciclovir plus gemcitabine combination therapy on cholangiocarcinoma. Exp Ther Med 2016; 12:183-189. [PMID: 27347037 PMCID: PMC4906843 DOI: 10.3892/etm.2016.3294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/14/2016] [Indexed: 12/16/2022] Open
Abstract
Herpes simplex virus-thymidine kinase/ganciclovir (HSV-TK/GCV) therapy is one of the most promising therapeutic strategies for the treatment of cholangiocarcinoma, which is the second most common hepatobiliary cancer. The aim of the present study was to evaluate the enhanced therapeutic effects of HSV-TK/GCV with gemcitabine on cholangiocarcinoma. QBC939 cholangiocarcinoma cells and mouse models of cholangiocarcinoma (established via tumor xenografts) received one of the following treatments: i) Gemcitabine therapy (3 µg/ml); ii) HSV-TK/GCV monotherapy; iii) HSV-TK/GCV + gemcitabine; and iv) control group, treated with phosphate-buffered saline. Cell proliferation was quantified using MTT assay and post-treatment tumor alterations were monitored using ultrasound imaging and optical imaging. For the in vitro experiments, the MTT assays demonstrated that the relative cell viabilities in the gene therapy, gemcitabine and gemcitabine + gene groups were 70.37±9.07, 52.64±8.28 and 34.21±6.63%, respectively. For the in vivo experiments, optical imaging indicated significantly decreased optical signals in the combination therapy group, as compared with the gemcitabine and gemcitabine + gene groups (1.68±0.74 vs. 2.27±0.58 and 2.87±0.82, respectively; Р<0.05). As demonstrated by ultrasound imaging, reduced tumor volumes were detected in the combination therapy group, as compared with the three control groups (114.32±17.17 vs. 159±23.74, 201.63±19.26 and 298.23±36.1 mm3, respectively; P<0.05). The results of the present study demonstrated that gemcitabine enhances the antitumoral effects of HSV-TK/GCV on cholangiocarcinoma, which may provide a novel therapeutic strategy for the management and treatment of cholangiocarcinoma using gemcitabine and gene therapy.
Collapse
Affiliation(s)
- Jianfeng Wang
- Department of Interventional Radiology, Beijing Chaoyang Hospital, Beijing 100020, P.R. China
| | - Ang Li
- Department of Biostatistics, Public Health School, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Mei Jin
- Department of Radiology, First Hospital of Qiqihar, Qiqihar, Heilongjiang 161006, P.R. China
| | - Fan Zhang
- Department of Radiology, First Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Xiaoling Li
- Department of Radiology, First Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
9
|
Onesti CE, Romiti A, Roberto M, Falcone R, Marchetti P. Recent advances for the treatment of pancreatic and biliary tract cancer after first-line treatment failure. Expert Rev Anticancer Ther 2015; 15:1183-98. [PMID: 26325474 DOI: 10.1586/14737140.2015.1081816] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Here, we evaluate clinical trials on chemotherapy for patients with pancreatic or biliary tract cancer after first-line treatment failure. Clinical trials on conventional and innovative medical treatments for progressive pancreatic and biliary cancer were analyzed. Metronomic chemotherapy, which consists of the administration of continuative low-dose of anticancer drugs, was also considered. A significant extension of overall survival was achieved with second-line, regimens in patients with gemcitabine-refractory pancreatic cancer. Moreover, many Phase II studies, including chemotherapy and target molecules and immunotherapy, have reported promising results, in both pancreatic and biliary cancer. However, data in these patients' setting are very heterogeneous, and only few randomized studies are available.
Collapse
Affiliation(s)
| | | | - Michela Roberto
- a Clinical and Molecular Medicine Department, Sapienza University, Rome, Italy
| | - Rosa Falcone
- a Clinical and Molecular Medicine Department, Sapienza University, Rome, Italy
| | - Paolo Marchetti
- a Clinical and Molecular Medicine Department, Sapienza University, Rome, Italy
| |
Collapse
|
10
|
Marquardt JU, Andersen JB. Liver cancer oncogenomics: opportunities and dilemmas for clinical applications. Hepat Oncol 2015; 2:79-93. [PMID: 26257864 DOI: 10.2217/hep.14.24] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Primary liver cancers are among the most rapidly evolving malignant tumors worldwide. An underlying chronic inflammatory liver disease, which precedes liver cancer development for several decades and frequently creates a pro-oncogenic microenvironment, impairs progress in therapeutic approaches. Molecular heterogeneity of liver cancer is potentiated by a crosstalk between epithelial tumor and stromal cells that complicate translational efforts to unravel molecular mechanisms of hepatocarcinogenesis with a drugable intend. Next-generation sequencing has greatly advanced our understanding of cancer development. With regards to liver cancer, the unprecedented coverage of next-generation sequencing has created a detailed map of genetic alterations and identified key somatic changes such as CTNNB1 and TP53 as well as several previously unrecognized recurrent disease-causing alterations that could contribute to new therapeutic approaches. Importantly, these investigations indicate that a classical oncogene addiction cannot be assumed for primary liver cancer. Therefore, hepatocarcinogenesis can be considered a paradigm suitable for individualized medicine.
Collapse
Affiliation(s)
- Jens U Marquardt
- Department of Medicine I, Universitätsmedizin Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Jesper B Andersen
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
11
|
Raggi C, Invernizzi P, Andersen JB. Impact of microenvironment and stem-like plasticity in cholangiocarcinoma: molecular networks and biological concepts. J Hepatol 2015; 62:198-207. [PMID: 25220250 DOI: 10.1016/j.jhep.2014.09.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/30/2014] [Accepted: 09/03/2014] [Indexed: 12/13/2022]
Abstract
Clinical complexity, anatomic diversity and molecular heterogeneity of cholangiocarcinoma (CCA) represent a major challenge in the assessment of effective targeted therapies. Molecular and cellular mechanisms underlying the diversity of CCA growth patterns remain a key issue of clinical concern. Crucial questions comprise the nature of the CCA-origin, the initial target for cellular transformation as well as the relationship with the cancer stem cells (CSC) concept. Additionally, since CCA often develops in the context of an inflammatory milieu (cirrhosis and cholangitis), the stromal compartment or tumour microenvironment (TME) likely promotes initiation and progression of this malignancy, contributing to its heterogeneity. This review will emphasize the dynamic interplay between stem-like intrinsic and TME-extrinsic pathways, which may represent novel options for multi-targeted therapies in CCA.
Collapse
Affiliation(s)
- Chiara Raggi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy.
| | - Pietro Invernizzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Jesper B Andersen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Multimodal treatment strategies for advanced hilar cholangiocarcinoma. Langenbecks Arch Surg 2014; 399:679-92. [PMID: 24962146 DOI: 10.1007/s00423-014-1219-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 06/17/2014] [Indexed: 12/17/2022]
Abstract
Cholangiocarcinoma (CCA) is the second most common primary malignancy of the liver arising from malignant transformation and growth of biliary ductal epithelium. Approximately 50-70 % of CCAs arise at the hilar plate of the biliary tree, which are termed hilar cholangiocarcinoma (HC). Various staging systems are currently employed to classify HCs and determine resectability. Depending on the pre-operative staging, the mainstays of treatment include surgery, chemotherapy, radiation therapy, and photodynamic therapy. Surgical resection offers the only chance for cure of HC and achieving an R0 resection has demonstrated improved overall survival. However, obtaining longitudinal and radial surgical margins that are free of tumor can be difficult and frequently requires extensive resections, particularly for advanced HCs. Pre-operative interventions may be necessary to prepare patients for major hepatic resections, including endoscopic retrograde cholangiopancreatography, percutaneous transhepatic cholangiography, and portal vein embolization. Multimodal therapy that combines chemotherapy with external beam radiation, stereotactic body radiation therapy, bile duct brachytherapy, and/or photodynamic therapy are all possible strategies for advanced HC prior to resection. Orthotopic liver transplantation is another therapeutic option that can achieve complete extirpation of locally advanced HC in judiciously selected patients following standardized neoadjuvant protocols.
Collapse
|