1
|
Feng X, Han L, Ma S, Zhao L, Wang L, Zhang K, Yin P, Guo L, Jing W, Li Q. Microbes in Tumoral In Situ Tissues and in Tumorigenesis. Front Cell Infect Microbiol 2020; 10:572570. [PMID: 33330121 PMCID: PMC7732458 DOI: 10.3389/fcimb.2020.572570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
Cancerous tumors are severe diseases affecting human health that have a complicated etiology and pathogenesis. Microbes have been considered to be related to the development and progression of numerous tumors through various pathogenic mechanisms in recent studies. Bacteria, which have so far remained the most studied microbes worldwide, have four major possible special pathogenic mechanisms (modulation of inflammation, immunity, DNA damage, and metabolism) that are related to carcinogenesis. This review aims to macroscopically summarize and verify the relationships between microbes and tumoral in situ tissues from cancers of four major different systems (urinary, respiratory, digestive, and reproductive); the abovementioned four microbial pathogenic mechanisms, as well as some synergistic pathogenic mechanisms, are also discussed. Once the etiologic role of microbes and their precise pathogenic mechanisms in carcinogenesis are known, the early prevention, diagnosis, and treatment of cancers would progress significantly.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Qiling Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
2
|
Jin K, Ren C, Liu Y, Lan H, Wang Z. An update on colorectal cancer microenvironment, epigenetic and immunotherapy. Int Immunopharmacol 2020; 89:107041. [PMID: 33045561 DOI: 10.1016/j.intimp.2020.107041] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/13/2020] [Accepted: 09/21/2020] [Indexed: 12/27/2022]
Abstract
Colorectal cancer (CRC) is considered as the second most common cancer worldwide. For the past few years, the role of immunotherapy has been extensively studied and it has been demonstrated that its related approaches, such as programmed death-1 (PD-1) inhibitors, are promising. In addition to identifying molecular characteristics of tumor cells, recent studies are mainly focused on the profiling of tumor microenvironment. Dissecting immune status of a tumor is interesting, since development of a tumor is associated with deficiencies relate to immune defense, immune surveillance and immune hemostasis. In this review, we discuss main obstacles of immunotherapy including immunosuppressive niche and low immunogenicity of CRC as well as reviewing current achievements in immunotherapy.
Collapse
Affiliation(s)
- Ketao Jin
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Chengcheng Ren
- Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Yuyao Liu
- Department of Colorectal Surgery, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing 312000, Zhejiang Province, PR China
| | - Huanrong Lan
- Department of Breast and Thyroid Surgery, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing 312000, Zhejiang Province, PR China
| | - Zhen Wang
- Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.
| |
Collapse
|
3
|
Zhang T, Zhang L, Wu X, Xu H, Hao P, Huang W, Zhang Y, Zan X. Hexahistidine-Metal Assemblies: A Facile and Effective Codelivery System of Subunit Vaccines for Potent Humoral and Cellular Immune Responses. Mol Pharm 2020; 17:2487-2498. [PMID: 32469222 DOI: 10.1021/acs.molpharmaceut.0c00212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fully effective vaccines must induce both potent humoral and cellular immunities. Nanoparticles coencapsulating antigens and adjuvants have shown promising advantages as subunit vaccines in many aspects. However, the low loading efficiency and complicated synthesis process of these nanomaterials need to be improved. Here, we utilized hexahistidine (His6)-metal assembly (HmA) particles as carriers to codeliver ovalbumin peptides and cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs). We found that antigen/adjuvant-carrying HmA can efficiently enter into antigen-presenting cells and help the antigens escape from lysosomes to induce the maturation of these cells in vitro, characterized by increasing expression levels of costimulatory molecules and cytokines. More importantly, the vaccines with high biocompatibility can elicit strong humoral and cellular immunities by improving secretion of specific antibodies and cytokines, enhancing activation of DCs and T cells in vivo. Our results suggest that HmA provides a new approach for subunit vaccines by codelivery of antigens and adjuvants.
Collapse
Affiliation(s)
- Tinghong Zhang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, P. R. China.,Wenzhou Institute, University of Chinese Academy of Sciences (Wenzhou Institute of Biomaterials & Engineering), Wenzhou 325001, P. R. China
| | - Long Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences (Wenzhou Institute of Biomaterials & Engineering), Wenzhou 325001, P. R. China
| | - Xiaoxiao Wu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, P. R. China
| | - Hongyan Xu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, P. R. China
| | - Pengyan Hao
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, P. R. China
| | - Wenjuan Huang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, P. R. China
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, P. R. China.,Wenzhou Institute, University of Chinese Academy of Sciences (Wenzhou Institute of Biomaterials & Engineering), Wenzhou 325001, P. R. China
| |
Collapse
|
4
|
Utilizing VEGF165b mutant as an effective immunization adjunct to augment antitumor immune response. Vaccine 2019; 37:2090-2098. [DOI: 10.1016/j.vaccine.2019.02.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 01/22/2019] [Accepted: 02/22/2019] [Indexed: 12/20/2022]
|
5
|
Wen C, Seeger RC, Fabbri M, Wang L, Wayne AS, Jong AY. Biological roles and potential applications of immune cell-derived extracellular vesicles. J Extracell Vesicles 2017; 6:1400370. [PMID: 29209467 PMCID: PMC5706476 DOI: 10.1080/20013078.2017.1400370] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/22/2017] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) deliver bioactive macromolecules (i.e. proteins, lipids and nucleic acids) for intercellular communication in multicellular organisms. EVs are secreted by all cell types including immune cells. Immune cell-derived EVs modulate diverse aspects of the immune system to either enhance or suppress immune activities. The extensive effects of immune cell-derived EVs have become the focus of great interest for various nano-biomedical applications, ranging from the medical use of nanoplatform-based diagnostic agents to the development of therapeutic interventions as well as vaccine applications, and thus may be ideal for ‘immune-theranostic’. Here, we review the latest advances concerning the biological roles of immune cell-derived EVs in innate and acquired immunity. The intercellular communication amongst immune cells through their EVs is highlighted, showing that all immune cell-derived EVs have their unique function(s) in immunity through intricate interaction(s). Natural-killer (NK) cell-derived EVs, for example, contain potent cytotoxic proteins and induce apoptosis to targeted cancer cells. On the other hand, cancer cell-derived EVs bearing NK ligands may evade immune surveillance and responses. Finally, we discuss possible medical uses for the immune cell-derived EVs as a tool for immune-theranostic: as diagnostic biomarkers, for use in therapeutic interventions and for vaccination.
Collapse
Affiliation(s)
- Chuan Wen
- Department of Pediatrics, Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation.,Division of Hematology, Children's Medical Center, The Second Xiangya Hospital, Central South University/Institute of Pediatrics, Central South University, Changsha, Hunan, PR China
| | - Robert C Seeger
- Department of Pediatrics, Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation
| | - Muller Fabbri
- Department of Pediatrics, Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation
| | - Larry Wang
- Department of Pathology, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alan S Wayne
- Department of Pediatrics, Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation
| | - Ambrose Y Jong
- Department of Pediatrics, Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation
| |
Collapse
|