1
|
Tang L, Xu H, Wu T, Wu W, Lu Y, Gu J, Wang X, Zhou M, Chen Q, Sun X, Cai H. Advances in tumor microenvironment and underlying molecular mechanisms of bladder cancer: a systematic review. Discov Oncol 2024; 15:111. [PMID: 38602556 PMCID: PMC11009183 DOI: 10.1007/s12672-024-00902-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/21/2024] [Indexed: 04/12/2024] Open
Abstract
Bladder cancer is one of the most frequent malignant tumors of the urinary system. The prevalence of bladder cancer among men and women is roughly 5:2, and both its incidence and death have been rising steadily over the past few years. At the moment, metastasis and recurrence of advanced bladder cancer-which are believed to be connected to the malfunction of multigene and multilevel cell signaling network-remain the leading causes of bladder cancer-related death. The therapeutic treatment of bladder cancer will be greatly aided by the elucidation of these mechanisms. New concepts for the treatment of bladder cancer have been made possible by the advancement of research technologies and a number of new treatment options, including immunotherapy and targeted therapy. In this paper, we will extensively review the development of the tumor microenvironment and the possible molecular mechanisms of bladder cancer.
Collapse
Affiliation(s)
- Liu Tang
- Department of Nursing, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Haifei Xu
- Department of Urology, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Tong Wu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Wenhao Wu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Yuhao Lu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Jijia Gu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Xiaoling Wang
- Department of Urology, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Mei Zhou
- Department of Nursing, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| | - Qiuyang Chen
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China.
| | - Xuan Sun
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China.
| | - Hongzhou Cai
- Department of Urology, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Cho JW, Son J, Ha SJ, Lee I. Systems biology analysis identifies TNFRSF9 as a functional marker of tumor-infiltrating regulatory T-cell enabling clinical outcome prediction in lung cancer. Comput Struct Biotechnol J 2021; 19:860-868. [PMID: 33598101 PMCID: PMC7851794 DOI: 10.1016/j.csbj.2021.01.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 12/21/2022] Open
Abstract
Regulatory T cells (Tregs) are enriched in the tumor microenvironment and play key roles in immune evasion of cancer cells. Cell surface markers specific for tumor-infiltrating Tregs (TI-Tregs) can be effectively targeted to enhance antitumor immunity and used for stratification of immunotherapy outcomes. Here, we present a systems biology approach to identify functional cell surface markers for TI-Tregs. We selected differentially expressed genes for surface proteins of TI-Tregs and compared these with other CD4+ T cells using bulk RNA-sequencing data from murine lung cancer models. Thereafter, we filtered for human orthologues with conserved expression in TI-Tregs using single-cell transcriptome data from patients with non-small cell lung cancer (NSCLC). To evaluate the functional importance of expression-based markers of TI-Tregs, we utilized network-based measure of context-associated centrality in a Treg-specific coregulatory network. We identified TNFRSF9 (also known as 4-1BB or CD137), a previously reported target for enhancing antitumor immunity, among the final candidates for TI-Treg markers with high functional importance score. We found that the low TNFRSF9 expression level in Tregs was associated with enhanced overall survival rate and response to anti-PD-1 immunotherapy in patients with NSCLC, proposing that TNFRSF9 promotes immune suppressive activity of Tregs in tumor. Collectively, these results demonstrated that integrative transcriptome and network analysis can facilitate the discovery of functional markers of tumor-specific immune cells to develop novel therapeutic targets and biomarkers for boosting cancer immunotherapy.
Collapse
Affiliation(s)
- Jae-Won Cho
- Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jimin Son
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Insuk Lee
- Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Ariafar A, Vahidi Y, Fakhimi M, Asadollahpour A, Erfani N, Faghih Z. Prognostic significance of CD4-positive regulatory T cells in tumor draining lymph nodes from patients with bladder cancer. Heliyon 2020; 6:e05556. [PMID: 33305045 PMCID: PMC7711140 DOI: 10.1016/j.heliyon.2020.e05556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/05/2020] [Accepted: 11/16/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction and methods To clarify the role of CD4+ regulatory T cells in bladder cancer, we investigated the frequency of these cells in tumor draining lymph nodes of 50 patients with bladder cancer who underwent radical cystectomy using flow cytometry method. We also assessed their association with prognosis and survival. Results On average, 30.13 ± 2.17% of lymphocytes in draining lymph nodes from patients with bladder cancer were positive for both CD4 and FOXP3 molecules. Analyses also showed that 9.92 ± 0.8% of CD4+ lymphocytes had a regulatory phenotype (CD4+CD25+FOXP3+CD127low/neg). The frequency of total CD4+FOXP3+ lymphocytes as well as regulatory T cells was significantly greater in patients with at least one tumor-involved lymph node compared to those with tumor-free nodes (P = 0.026 and P = 0.036, respectively). Mean FOXP3 expression in CD4+ lymphocytes was greater in patients with stage IV compared with those in stage III (P = 0.046). No other significant associations were found between the frequency of regulatory T cells and other clinicopathological characteristics or patient survival. Conclusions The increased frequency of regulatory T cells in patients with involved lymph nodes suggests that these cells may negatively regulate antitumor immune responses in draining lymph nodes. Our findings may have implications for immunotherapy-based treatments for bladder cancer.
Collapse
Affiliation(s)
- Ali Ariafar
- Urology-Oncology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Urology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yasmin Vahidi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Fakhimi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ardalan Asadollahpour
- Department of Urology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrollah Erfani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Faghih
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Corresponding author.
| |
Collapse
|
4
|
Han S, Huang K, Gu Z, Wu J. Tumor immune microenvironment modulation-based drug delivery strategies for cancer immunotherapy. NANOSCALE 2020; 12:413-436. [PMID: 31829394 DOI: 10.1039/c9nr08086d] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The past years have witnessed promising clinical feedback for anti-cancer immunotherapies, which have become one of the hot research topics; however, they are limited by poor delivery kinetics, narrow patient response profiles, and systemic side effects. To the best of our knowledge, the development of cancer is highly associated with the immune system, especially the tumor immune microenvironment (TIME). Based on the comprehensive understanding of the complexity and diversity of TIME, drug delivery strategies focused on the modulation of TIME can be of great significance for directing and improving cancer immunotherapy. This review highlights the TIME modulation in cancer immunotherapy and summarizes the versatile TIME modulation-based cancer immunotherapeutic strategies, medicative principles and accessory biotechniques for further clinical transformation. Remarkably, the recent advances of cancer immunotherapeutic drug delivery systems and future prospects of TIME modulation-based drug delivery systems for much more controlled and precise cancer immunotherapy will be emphatically discussed.
Collapse
Affiliation(s)
- Shuyan Han
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, PR China.
| | | | | | | |
Collapse
|
5
|
Kochin V, Nishikawa H. <Editors' Choice> Meddling with meddlers: curbing regulatory T cells and augmenting antitumor immunity. NAGOYA JOURNAL OF MEDICAL SCIENCE 2019; 81:1-18. [PMID: 30962651 PMCID: PMC6433633 DOI: 10.18999/nagjms.81.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CD4+ regulatory T cells (Tregs) expressing the transcription factor forkhead
box P3 (FoxP3) play an important role in self-tolerance and immune homeostasis. Tregs have
evolved to protect the host from aberrant immune responses against self-components and
collateral damages occurring in the process of defense against invading pathogens by
softening immune responses. However, they turned to be a scourge in malignant tumors by
not only allowing and promoting tumor growth but also suppressing effective antitumor
actions, both inherent (host’s immune surveillance) and extrinsic (anticancer therapy). An
increase in the number of Tregs infiltrating into tumor sites and a concomitant decrease
in the number of CD8+ cytotoxic T lymphocytes are associated with a poor
prognosis for various types of cancers, marking Tregs as notorious meddlers with an
effective antitumor response. Various cancer immunotherapy approaches are often dampened
by meddling Tregs, making them one of the major targets in the treatment of cancer. The
recent success of immune checkpoint inhibitors (ICIs) that target immune checkpoint
molecules expressed by Tregs or effector T cells implies, that “meddling with meddlers”
represents an effective strategy in cancer immunotherapy. However, clinical responses to
ICIs are effective and durable only in some patients with cancer, whereas more than half
of them do not show significant clinical improvement. This implies that a therapeutic
approach based on the use of a single ICI, or targeting Tregs alone, is insufficient,
highlighting the need for combinatorial approaches. With regard to antitumor immune
stimulation, several approaches, such as vaccination with peptides (or the corresponding
DNA) to stimulate antigen-presenting CD8+ T cells with tumor-specific
neoantigens, cancer/testis antigens, or cancer stem cell antigens, that eventually boost
effective cytotoxic antitumor responses are being tested. This review describes the
immunosuppressive physiology of Tregs and their meddling with the host’s antitumor
immunity; current and prospective approaches to curb Tregs; and approaches to augment
antitumor immunity.
Collapse
Affiliation(s)
- Vitaly Kochin
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo / Chiba, Japan
| |
Collapse
|
6
|
Tse E, Kwong YL. Immunologic Milieu of Mature T-Cell and NK-Cell Lymphomas-Implications for Therapy. Curr Hematol Malig Rep 2018; 13:37-43. [PMID: 29396703 DOI: 10.1007/s11899-018-0437-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF THE REVIEW T-cells and natural killer (NK) cells share the same ontogeny, and lymphomas derived from them are clinically diverse, occurring in nodal and extranodal sites. In addition to inherent properties of these lymphomas, their microenvironment also impacts on pathogenesis and response to therapy. An understanding of the milieu of T-cell and NK cell lymphomas has important implications on treatment. RECENT FINDINGS Components of the microenvironment include tumour-associated macrophages (TAM), non-neoplastic T-cells and B-cells, eosinophils, dendritic cells, endothelial cells and blood vessels. TAM typically undergoes M2 polarization, promoting angiogenesis and inhibiting anti-tumour cellular immunity. In lymphomas of follicular helper T-cell derivation, increased B-cell proliferation occurs, which may in turn enhance neoplastic T-cell growth. The expression of immune checkpoint ligands on TAM, dendritic cells or lymphoma cells induces an immunosuppressive environment conducive to neoplastic proliferation. Strategies against this complex cellular and immunologic microenvironment have shown promises. These include the use of signal transduction inhibitors, monoclonal antibodies against chemokines or non-neoplastic microenvironmental cells, immunomodulatory drugs and immune checkpoint blockade. As T-cell and NK cell lymphomas are highly heterogeneous, clinical trials to demonstrate efficacy of a given therapeutic approach requires careful design aiming at enriching patient populations who will best respond. Targeting of the immunologic milieu in T-cell and NK-cell lymphomas offers exciting challenges and opportunities.
Collapse
MESH Headings
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Cell Proliferation
- Dendritic Cells/immunology
- Dendritic Cells/pathology
- Humans
- Lymphoma, Extranodal NK-T-Cell/immunology
- Lymphoma, Extranodal NK-T-Cell/pathology
- Lymphoma, Extranodal NK-T-Cell/therapy
- Lymphoma, T-Cell, Peripheral/immunology
- Lymphoma, T-Cell, Peripheral/pathology
- Lymphoma, T-Cell, Peripheral/therapy
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/pathology
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Eric Tse
- Department of Medicine, Professorial Block, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
| | - Yok-Lam Kwong
- Department of Medicine, Professorial Block, Queen Mary Hospital, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
7
|
Cho YJ, Lee SH, Park JW, Han M, Park MJ, Han SJ. Dysfunctional signaling underlying endometriosis: current state of knowledge. J Mol Endocrinol 2018; 60:R97-R113. [PMID: 29330150 DOI: 10.1530/jme-17-0227] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/11/2018] [Indexed: 12/18/2022]
Abstract
Endometriosis is defined as the presence of endometrial tissue outside the uterine cavity. It affects approximately 5-10% of women of reproductive age. Endometriosis is associated with dysmenorrhea, dyspareunia and, often, severe pelvic pain. In addition to pain, women with endometriosis often experience infertility. Defining the molecular etiology of endometriosis is a significant challenge for improving the quality of women's lives. Unfortunately, the pathophysiology of endometriosis is not well understood. Here, we summarize the potential causative factors of endometriosis in the following three categories: (1) dysregulation of immune cells in the peritoneal fluid and endometriotic lesions; (2) alteration of apoptotic signaling in retrograde menstrual tissue and cytotoxic T cells involved in endometriosis progression and (3) dysregulation of oxidative stress. Determining the molecular etiology of these dysregulated cellular signaling pathways should provide crucial clues for understanding initiation and progression of endometriosis. Moreover, improved understanding should suggest new molecular therapeutic targets that could improve the specificity of endometriosis treatments and reduce the side effects associated with current approaches.
Collapse
Affiliation(s)
- Yeon Jean Cho
- Department of Obstetrics and Gynecology, Dong-A University, College of Medicine, Busan, Republic of Korea
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Seung Hyun Lee
- Department of Obstetrics and Gynecology, Dong-A University, College of Medicine, Busan, Republic of Korea
| | - Jung Woo Park
- Department of Obstetrics and Gynecology, Dong-A University, College of Medicine, Busan, Republic of Korea
| | - Myoungseok Han
- Department of Obstetrics and Gynecology, Dong-A University, College of Medicine, Busan, Republic of Korea
| | - Mi Jin Park
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Sang Jun Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
8
|
Hartshorn CM, Bradbury MS, Lanza GM, Nel AE, Rao J, Wang AZ, Wiesner UB, Yang L, Grodzinski P. Nanotechnology Strategies To Advance Outcomes in Clinical Cancer Care. ACS NANO 2018; 12:24-43. [PMID: 29257865 PMCID: PMC6589353 DOI: 10.1021/acsnano.7b05108] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Ongoing research into the application of nanotechnology for cancer treatment and diagnosis has demonstrated its advantages within contemporary oncology as well as its intrinsic limitations. The National Cancer Institute publishes the Cancer Nanotechnology Plan every 5 years since 2005. The most recent iteration helped codify the ongoing basic and translational efforts of the field and displayed its breadth with several evolving areas. From merely a technological perspective, this field has seen tremendous growth and success. However, an incomplete understanding of human cancer biology persists relative to the application of nanoscale materials within contemporary oncology. As such, this review presents several evolving areas in cancer nanotechnology in order to identify key clinical and biological challenges that need to be addressed to improve patient outcomes. From this clinical perspective, a sampling of the nano-enabled solutions attempting to overcome barriers faced by traditional therapeutics and diagnostics in the clinical setting are discussed. Finally, a strategic outlook of the future is discussed to highlight the need for next-generation cancer nanotechnology tools designed to address critical gaps in clinical cancer care.
Collapse
Affiliation(s)
- Christopher M Hartshorn
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Corresponding Author,
| | - Michelle S Bradbury
- Department of Radiology and Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, New York, New York, 10065, United States
| | - Gregory M Lanza
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63108, United States
| | - Andre E Nel
- Division of NanoMedicine, Department of Medicine, and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Jianghong Rao
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, Stanford, California 94305, United States
| | - Andrew Z. Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ulrich B Wiesner
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14843, United States
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Piotr Grodzinski
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Corresponding Author,
| |
Collapse
|
9
|
Zheng X, Hu Y, Yao C. The paradoxical role of tumor-infiltrating immune cells in lung cancer. Intractable Rare Dis Res 2017; 6:234-241. [PMID: 29259850 PMCID: PMC5735275 DOI: 10.5582/irdr.2017.01059] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lung cancer remains one of the leading causes of death worldwide, and lung cancers have often already metastasized when diagnosed. Numerous studies have noted the infiltration of immune cells in the lung cancer microenvironment, but these cells play a dualistic role, i.e. they suppress and/or promote tumor development and growth based on tumor progression and different cytokines in the microenvironment. These tumor-infiltrating immune cells create different microenvironments depending on their type and interaction. Chemokines act as a bridge in this process by recruiting immune cells to the tumor site and they regulate the phenotypes and functions of those cells. The current review summarizes current knowledge about the tumor-infiltrating immune cells in lung cancer as well as the mechanisms involved in suppression and promotion of tumor development and growth.
Collapse
Affiliation(s)
- Xiaodan Zheng
- Clinical Laboratory, Wuhan Hankou Hospital, Wuhan, China
| | - Yuhai Hu
- Clinical Laboratory, Wuhan Hankou Hospital, Wuhan, China
| | - Chengfang Yao
- Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Ji'nan, China
- Address correspondence to: Dr. Chengfang Yao, Institute of Basic Medicine, Shandong Academy of Medical Sciences, No. 18877 Jingshi Road, Ji'nan 250062, Shandong, China. E-mail:
| |
Collapse
|