1
|
Zhra M, Akhund SA, Mohammad KS. Advancements in Osteosarcoma Therapy: Overcoming Chemotherapy Resistance and Exploring Novel Pharmacological Strategies. Pharmaceuticals (Basel) 2025; 18:520. [PMID: 40283955 PMCID: PMC12030420 DOI: 10.3390/ph18040520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Osteosarcoma is recognized as the most prevalent primary bone malignancy, primarily affecting children and adolescents. It is characterized by its aggressive behavior and high metastatic potential, which often leads to poor patient outcomes. Despite advancements in surgical techniques and chemotherapy regimens, the prognosis for patients with osteosarcoma remains unsatisfactory, with survival rates plateauing over the past few decades. A significant barrier to effective treatment is the development of chemotherapy resistance, which complicates the management of the disease and contributes to high rates of recurrence. This review article aims to provide a comprehensive overview of recent advancements in osteosarcoma therapy, particularly in overcoming chemotherapy resistance. We begin by discussing the current standard treatment modalities, including surgical resection and conventional chemotherapy agents such as methotrexate, doxorubicin, and cisplatin. While these approaches have been foundational in managing osteosarcoma, they are often limited by adverse effects and variability in efficacy among patients. To address these challenges, we explore novel pharmacological strategies that aim to enhance treatment outcomes. This includes targeted therapies focusing on specific molecular alterations in osteosarcoma cells and immunotherapeutic approaches designed to harness the body's immune system against tumors. Additionally, we review innovative drug delivery systems that aim to improve the bioavailability and efficacy of existing treatments while minimizing toxicity. The review also assesses the mechanisms underlying chemotherapy resistance, such as drug efflux mechanisms, altered metabolism, and enhanced DNA repair pathways. By synthesizing current research findings, we aim to highlight the potential of new therapeutic agents and strategies for overcoming these resistance mechanisms. Ultimately, this article seeks to inform future research directions and clinical practices, underscoring the need for continued innovation in treating osteosarcoma to improve patient outcomes and survival rates.
Collapse
Affiliation(s)
| | | | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.Z.); (S.A.A.)
| |
Collapse
|
2
|
Hui X, Xue M, Ren Y, Chen Y, Chen X, Farooq MA, Ji Y, Zhan W, Huang Y, Du B, Yao J, Duan Y, Jiang W. GPR132 regulates the function of NK cells through the Gαs/CSK/ZAP70/NF-κB signaling pathway as a potential immune checkpoint. SCIENCE ADVANCES 2025; 11:eadr9395. [PMID: 40043109 PMCID: PMC11881902 DOI: 10.1126/sciadv.adr9395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/30/2025] [Indexed: 05/13/2025]
Abstract
As a member of the proton-sensing GPCR receptors, GPR132 plays a crucial role in regulating immune cell functions, but the mechanism by which GPR132 affects natural killer (NK) cells has not yet been reported. Here, RNA-seq displayed that the expression of GPR132 was reduced in activated NK cells, and the proportion of mature NK cells in GPR132-/- mice was substantially increased compared to WT mice, with stronger anti-melanoma capabilities. Further investigation indicates that GPR132-deficient NK92 cells expressed more GzmB and IFN-γ and exhibited stronger cytotoxicity. Mechanically, GPR132 regulates NK cell function through the CSK/ZAP70/NF-κB signaling axis. Down-regulation of GPR132 weakens the inhibition of NK cell function by lactate, thereby enhancing the functional execution of CAR-NK cells against colorectal cancer. These results highlight the previously unrecognized role of GPR132 in the regulation of NK cell function and that inhibition of GPR132 provided an updated insight for NK cell therapy.
Collapse
Affiliation(s)
- Xinhui Hui
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Min Xue
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yaojun Ren
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
- College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Yiran Chen
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xuenan Chen
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Muhammad Asad Farooq
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Yuzhou Ji
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weirong Zhan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yunhe Huang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Bingtan Du
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jie Yao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yixin Duan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
3
|
Cheng B, Lv J, Xiao Y, Song C, Chen J, Shao C. Small molecule inhibitors targeting PD-L1, CTLA4, VISTA, TIM-3, and LAG3 for cancer immunotherapy (2020-2024). Eur J Med Chem 2025; 283:117141. [PMID: 39653621 DOI: 10.1016/j.ejmech.2024.117141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025]
Abstract
Cancer immunotherapy, leveraging antibodies, excels in targeting efficacy but faces hurdles in tissue penetration, oral delivery, and prolonged half-life, with costly production and risk of adverse immunogenic effects. In contrast, small molecule immuno-oncology agents provide favorable pharmacokinetic properties and benign toxicity profiles. These agents are well-positioned to address the limitations of antibody-based immunotherapies, augment existing treatment modalities, and achieve synergistic effects when combined with antibodies. This review, for the first time, summarizes the recent advances (2020-2024) in small molecule inhibitors targeting PD-1/PD-L1, CTLA4, VISTA, TIM-3, and LAG3, highlighting rational design, benefits, and potential limitations. It also outlines the prospects for small-molecule immunotherapy.
Collapse
Affiliation(s)
- Binbin Cheng
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang 323000, China; Hubei Polytechnic University, Huangshi, Hubei 435003, China
| | - Jinke Lv
- Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Foshan 528000, China
| | - Yao Xiao
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan Wuchang Hospital, Wuchang 430063, China
| | - Changshan Song
- Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Foshan 528000, China.
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Chuxiao Shao
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang 323000, China.
| |
Collapse
|
4
|
Saadh MJ, Allela OQB, Kareem RA, Sanghvi G, Menon SV, Sharma P, Tomar BS, Sharma A, Sameer HN, Hamad AK, Athab ZH, Adil M. From Gut to Brain: The Impact of Short-Chain Fatty Acids on Brain Cancer. Neuromolecular Med 2025; 27:10. [PMID: 39821841 DOI: 10.1007/s12017-025-08830-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
The primary source of short-chain fatty acids (SCFAs), now recognized as critical mediators of host health, particularly in the context of neurobiology and cancer development, is the gut microbiota's fermentation of dietary fibers. Recent research highlights the complex influence of SCFAs, such as acetate, propionate, and butyrate, on brain cancer progression. These SCFAs impact immune modulation and the tumor microenvironment, particularly in brain tumors like glioma. They play a critical role in regulating cellular processes, including apoptosis, cell differentiation, and inflammation. Moreover, studies have linked SCFAs to maintaining the integrity of the blood-brain barrier (BBB), suggesting a protective role in preventing tumor infiltration and enhancing anti-tumor immunity. As our understanding of the gut-brain axis deepens, it becomes increasingly important to investigate SCFAs' therapeutic potential in brain cancer management. Looking into how SCFAs affect brain tumor cells and the environment around them could lead to new ways to prevent and treat these diseases, which could lead to better outcomes for people who are dealing with these challenging cancers.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | | | - Gaurav Sanghvi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Pawan Sharma
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Balvir S Tomar
- Institute of Pediatric Gastroenterology and Hepatology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Aanchal Sharma
- Department of Medical Lab Sciences, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
5
|
Hasan A, Khan NA, Uddin S, Khan AQ, Steinhoff M. Deregulated transcription factors in the emerging cancer hallmarks. Semin Cancer Biol 2024; 98:31-50. [PMID: 38123029 DOI: 10.1016/j.semcancer.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/25/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Cancer progression is a multifaceted process that entails several stages and demands the persistent expression or activation of transcription factors (TFs) to facilitate growth and survival. TFs are a cluster of proteins with DNA-binding domains that attach to promoter or enhancer DNA strands to start the transcription of genes by collaborating with RNA polymerase and other supporting proteins. They are generally acknowledged as the major regulatory molecules that coordinate biological homeostasis and the appropriate functioning of cellular components, subsequently contributing to human physiology. TFs proteins are crucial for controlling transcription during the embryonic stage and development, and the stability of different cell types depends on how they function in different cell types. The development and progression of cancer cells and tumors might be triggered by any anomaly in transcription factor function. It has long been acknowledged that cancer development is accompanied by the dysregulated activity of TF alterations which might result in faulty gene expression. Recent studies have suggested that dysregulated transcription factors play a major role in developing various human malignancies by altering and rewiring metabolic processes, modifying the immune response, and triggering oncogenic signaling cascades. This review emphasizes the interplay between TFs involved in metabolic and epigenetic reprogramming, evading immune attacks, cellular senescence, and the maintenance of cancer stemness in cancerous cells. The insights presented herein will facilitate the development of innovative therapeutic modalities to tackle the dysregulated transcription factors underlying cancer.
Collapse
Affiliation(s)
- Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Lucknow 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow 226026, India
| | - Naushad Ahmad Khan
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Biosciences, Integral University, Lucknow 226026, India; Animal Research Center, Qatar University, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar.
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Animal Research Center, Qatar University, Doha, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar
| |
Collapse
|
6
|
Cignarella A, Vegeto E, Bolego C, Trabace L, Conti L, Ortona E. Sex-oriented perspectives in immunopharmacology. Pharmacol Res 2023; 197:106956. [PMID: 37820857 DOI: 10.1016/j.phrs.2023.106956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/27/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
Several immunopharmacological agents are effective in the treatment of cancer and immune-mediated conditions, with a favorable impact on life expectancy and clinical outcomes for a large number of patients. Nevertheless, response variation and undesirable effects of these drugs represent major issues, and overall efficacy remains unpredictable. Males and females show a distinct difference in immune system responses, with females generally mounting stronger responses to a variety of stimuli. Therefore, exploring sex differences in the efficacy and safety of immunopharmacological agents would strengthen the practice of precision medicine. As a pharmacological target highlight, programmed cell death 1 ligand 1 (PD-L1) is the first functionally characterized ligand of the coinhibitory programmed death receptor 1 (PD-1). The PD-L1/PD-1 crosstalk plays an important role in the immune response and is relevant in cancer, infectious and autoimmune disease. Sex differences in the response to immune checkpoint inhibitors are well documented, with male patients responding better than female patients. Similarly, higher efficacy of and adherence to tumor necrosis factor inhibitors in chronic inflammatory conditions including rheumatoid arthritis and Crohn's disease have been reported in male patients. The pharmacological basis of sex-specific responses to immune system modulating drugs is actively investigated in other settings such as stroke and type 1 diabetes. Advances in therapeutics targeting the endothelium could soon be wielded against autoimmunity and metabolic disorders. Based on the established sexual dimorphism in immune-related pathophysiology and disease presentation, sex-specific immunopharmacological protocols should be integrated into clinical guidelines.
Collapse
Affiliation(s)
| | - Elisabetta Vegeto
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Lucia Conti
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Elena Ortona
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
7
|
Schmelter C, Fomo KN, Brueck A, Perumal N, Markowitsch SD, Govind G, Speck T, Pfeiffer N, Grus FH. Glaucoma-Associated CDR1 Peptide Promotes RGC Survival in Retinal Explants through Molecular Interaction with Acidic Leucine Rich Nuclear Phosphoprotein 32A (ANP32A). Biomolecules 2023; 13:1161. [PMID: 37509196 PMCID: PMC10377047 DOI: 10.3390/biom13071161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Glaucoma is a complex, multifactorial optic neuropathy mainly characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons, resulting in a decline of visual function. The pathogenic molecular mechanism of glaucoma is still not well understood, and therapeutic strategies specifically addressing the neurodegenerative component of this ocular disease are urgently needed. Novel immunotherapeutics might overcome this problem by targeting specific molecular structures in the retina and providing direct neuroprotection via different modes of action. Within the scope of this research, the present study showed for the first time beneficial effects of the synthetic CDR1 peptide SCTGTSSDVGGYNYVSWYQ on the viability of RGCs ex vivo in a concentration-dependent manner compared to untreated control explants (CTRL, 50 µg/mL: p < 0.05 and 100 µg/mL: p < 0.001). Thereby, this specific peptide was identified first as a potential biomarker candidate in the serum of glaucoma patients and was significantly lower expressed in systemic IgG molecules compared to healthy control subjects. Furthermore, MS-based co-immunoprecipitation experiments confirmed the specific interaction of synthetic CDR1 with retinal acidic leucine-rich nuclear phosphoprotein 32A (ANP32A; p < 0.001 and log2 fold change > 3), which is a highly expressed protein in neurological tissues with multifactorial biological functions. In silico binding prediction analysis revealed the N-terminal leucine-rich repeat (LRR) domain of ANP32A as a significant binding site for synthetic CDR1, which was previously reported as an important docking site for protein-protein interactions (PPI). In accordance with these findings, quantitative proteomic analysis of the retinae ± CDR1 treatment resulted in the identification of 25 protein markers, which were significantly differentially distributed between both experimental groups (CTRL and CDR1, p < 0.05). Particularly, acetyl-CoA biosynthesis I-related enzymes (e.g., DLAT and PDHA1), as well as cytoskeleton-regulating proteins (e.g., MSN), were highly expressed by synthetic CDR1 treatment in the retina; on the contrary, direct ANP32A-interacting proteins (e.g., NME1 and PPP2R4), as well as neurodegenerative-related markers (e.g., CEND1), were identified with significant lower abundancy in the CDR1-treated retinae compared to CTRL. Furthermore, retinal protein phosphorylation and histone acetylation were also affected by synthetic CDR1, which are both partially controlled by ANP32A. In conclusion, the synthetic CDR1 peptide provides a great translational potential for the treatment of glaucoma in the future by eliciting its neuroprotective mechanism via specific interaction with ANP32A's N terminal LRR domain.
Collapse
Affiliation(s)
- Carsten Schmelter
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| | - Kristian Nzogang Fomo
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| | - Alina Brueck
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| | - Natarajan Perumal
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| | - Sascha D. Markowitsch
- Department of Urology and Pediatric Urology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Gokul Govind
- Institute of Physics, Johannes Gutenberg University, 55131 Mainz, Germany; (G.G.)
| | - Thomas Speck
- Institute of Physics, Johannes Gutenberg University, 55131 Mainz, Germany; (G.G.)
| | - Norbert Pfeiffer
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| | - Franz H. Grus
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| |
Collapse
|
8
|
Wang Y, Smith M, Ruiz J, Liu Y, Kucera GL, Topaloglu U, Chan MD, Li W, Su J, Xing F. Modulation of oxidative phosphorylation and mitochondrial biogenesis by cigarette smoke influence the response to immune therapy in NSCLC patients. Lung Cancer 2023; 178:37-46. [PMID: 36773459 PMCID: PMC10065953 DOI: 10.1016/j.lungcan.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/06/2023]
Abstract
The treatment regimen of non-small cell lung cancer (NSCLC) has drastically changed owing to the superior anti-cancer effects generated by the immune-checkpoint blockade (ICB). However, only a subset of patients experience benefit after receiving ICBs. Therefore, it is of paramount importance to increase the response rate by elucidating the underlying molecular mechanisms and identifying novel therapeutic targets to enhance the efficacy of IBCs in non-responders. We analyzed the progression-free survival (PFS) and overall survival (OS) of 295 NSCLC patients who received anti-PD-1 therapy by segregating them with multiple clinical factors including sex, age, race, smoking history, BMI, tumor grade and subtype. We also identified key signaling pathways and mutations that are enriched in patients with distinct responses to ICB by gene set enrichment analysis (GSEA) and mutational analyses. We found that former and current smokers have a higher response rate to anti-PD-1 treatment than non-smokers. GSEA results revealed that oxidative phosphorylation (OXPHOS) and mitochondrial related pathways are significantly enriched in both responders and smokers, suggesting a potential role of cellular metabolism in regulating immune response to ICB. We also demonstrated that all-trans retinoic acid (ATRA) which enhances mitochondrial function significantly enhanced the efficacy of anti-PD-1 treatment in vivo. Our clinical and bioinformatics based analyses revealed a connection between smoking induced metabolic switch and the response to immunotherapy, which can be the basis for developing novel combination therapies that are beneficial to never smoked NSCLC patients.
Collapse
Affiliation(s)
- Yuezhu Wang
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Margaret Smith
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Jimmy Ruiz
- Department of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Yin Liu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Gregory L Kucera
- Department of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Umit Topaloglu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Michael D Chan
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Wencheng Li
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jing Su
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fei Xing
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
9
|
Ghafelehbashi R, Farshbafnadi M, Aghdam NS, Amiri S, Salehi M, Razi S. Nanoimmunoengineering strategies in cancer diagnosis and therapy. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:78-90. [PMID: 36076122 DOI: 10.1007/s12094-022-02935-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023]
Abstract
Cancer immunotherapy strategies in combination with engineered nanosystems have yielded beneficial results in the treatment of cancer and their application is increasing day by day. The pivotal role of stimuli-responsive nanosystems and nanomedicine-based cancer immunotherapy, as a subsidiary discipline in the field of immunology, cannot be ignored. Today, rapid advances in nanomedicine are used as a platform for exploring new therapeutic applications and modern smart healthcare management strategies. The progress of nanomedicine in cancer treatment has confirmed the findings of immunotherapy in the medical research phase. This study concentrates on approaches connected to the efficacy of nanoimmunoengineering strategies for cancer immunotherapies and their applications. By assessing improved approaches, different aspects of the nanoimmunoengineering strategies for cancer therapies are discussed in this study.
Collapse
Affiliation(s)
- Robabehbeygom Ghafelehbashi
- Department of Materials and Textile Engineering, College of Engineering, Razi University, Kermanshah, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Melina Farshbafnadi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shahin Amiri
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Mitra Salehi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran. .,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran. .,School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Uddin S, Islam MR, Md Moshikur R, Wakabayashi R, Kamiya N, Moniruzzaman M, Goto M. Transdermal Delivery of Antigenic Protein Using Ionic Liquid-Based Nanocarriers for Tumor Immunotherapy. ACS APPLIED BIO MATERIALS 2022; 5:2586-2597. [PMID: 35472266 DOI: 10.1021/acsabm.2c00061] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Transdermal drug delivery systems (TDDSs) may be useful for preventing various diseases including cancer. However, the stratum corneum (SC) inhibits the permeation of foreign particles into the skin. To obtain an effective TDDS, we developed a protein-containing nanocarrier (PCNC) comprising an antigenic protein (ovalbumin/OVA) stabilized by a combination of surfactants, i.e., a lipid-based surface-active ionic liquid and Tween-80. The PCNC was lyophilized to remove water and cyclohexane and then dispersed in isopropyl myristate. It is biocompatible both in vitro and in vivo, and is suitable for use in a therapeutic TDDS. The skin permeability of the PCNC was significantly (p < 0.0001) enhanced, and the transdermal distribution and transdermal flux of the OVA delivery system were 25 and 28 times greater, respectively, than those of its aqueous formulation. The PCNC disrupted the order of lipid orientation in the skin's SC and increased intercellular protein delivery. It demonstrated effective antitumor activity, drastically (p < 0.001) suppressed tumor growth, increased mouse survival rates, and significantly (p < 0.001) stimulated the OVA-specific tumor immune response. The PCNC also increased the number of cytotoxic T cells expressing CD8 antibodies on their surfaces (CD8 + T-cells) in the tumor microenvironment. These findings suggest that PCNCs may be promising biocompatible carriers for transdermal antigenic protein delivery in tumor immunotherapy.
Collapse
Affiliation(s)
- Shihab Uddin
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Md Rafiqul Islam
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Rahman Md Moshikur
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Advanced Transdermal Drug Delivery System Centre, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Advanced Transdermal Drug Delivery System Centre, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Division of Biotechnology, Centre for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Muhammad Moniruzzaman
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Advanced Transdermal Drug Delivery System Centre, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Division of Biotechnology, Centre for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
11
|
Li R, Wang X, Zhang Y, Xu X, Wang L, Wei C, Liu L, Wang Z, Li Y. Analysis of Tryptophan and Its Main Metabolite Kynurenine and the Risk of Multiple Cancers Based on the Bidirectional Mendelian Randomization Analysis. Front Oncol 2022; 12:852718. [PMID: 35494045 PMCID: PMC9046840 DOI: 10.3389/fonc.2022.852718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
BackgroundTryptophan and its metabolites have been found related to various cancers, but the direction of this relationship is still unclear. The purpose of this study is to explore the causal associations of tryptophan and kynurenine with multiple cancers based on the bidirectional Mendelian randomization analysis.MethodsThe data of a genome-wide association study meta-analysis on 7,824 individuals was used to explore the genetic variants strongly associated with tryptophan and kynurenine. Genetic instruments of four specific cancers were obtained from available summary-level data of 323,590 European participants. Bidirectional Mendelian randomization analysis was conducted to examine possible causality. Sensitivity analysis was performed to test heterogeneity and horizontal pleiotropy. COX regression analysis was conducted to explore associations between dietary tryptophan and cancer mortality in NHANES 1988-1994.ResultsNo evidence of any causal association of tryptophan and kynurenine with the risk of four specific cancers was shown, except for weak correlations were suggested between lung or prostate cancer and kynurenine. Multiple sensitivity analyses generated similar results. Our findings from COX regression analysis were consistent with the above results.ConclusionsOur study did not find any causal relationship between tryptophan and kynurenine and multiple cancers. The associations still need further research.
Collapse
|
12
|
Zhai BT, Tian H, Sun J, Zou JB, Zhang XF, Cheng JX, Shi YJ, Fan Y, Guo DY. Urokinase-type plasminogen activator receptor (uPAR) as a therapeutic target in cancer. J Transl Med 2022; 20:135. [PMID: 35303878 PMCID: PMC8932206 DOI: 10.1186/s12967-022-03329-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/03/2022] [Indexed: 12/22/2022] Open
Abstract
Urokinase-type plasminogen activator receptor (uPAR) is an attractive target for the treatment of cancer, because it is expressed at low levels in healthy tissues but at high levels in malignant tumours. uPAR is closely related to the invasion and metastasis of malignant tumours, plays important roles in the degradation of extracellular matrix (ECM), tumour angiogenesis, cell proliferation and apoptosis, and is associated with the multidrug resistance (MDR) of tumour cells, which has important guiding significance for the judgement of tumor malignancy and prognosis. Several uPAR-targeted antitumour therapeutic agents have been developed to suppress tumour growth, metastatic processes and drug resistance. Here, we review the recent advances in the development of uPAR-targeted antitumor therapeutic strategies, including nanoplatforms carrying therapeutic agents, photodynamic therapy (PDT)/photothermal therapy (PTT) platforms, oncolytic virotherapy, gene therapy technologies, monoclonal antibody therapy and tumour immunotherapy, to promote the translation of these therapeutic agents to clinical applications.
Collapse
Affiliation(s)
- Bing-Tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Huan Tian
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jun-Bo Zou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Xiao-Fei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jiang-Xue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Ya-Jun Shi
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Yu Fan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Dong-Yan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| |
Collapse
|
13
|
Wang G, Sun S, Guo H. Current status of carbazole hybrids as anticancer agents. Eur J Med Chem 2021; 229:113999. [PMID: 34838335 DOI: 10.1016/j.ejmech.2021.113999] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/07/2021] [Accepted: 11/13/2021] [Indexed: 12/15/2022]
Abstract
The drug resistance and low specificity of current available chemotherapeutics to cancer cells are the main reasons responsible for the failure of cancer chemotherapy and remain dramatic challenges for cancer therapy, creating an urgent need to develop novel anticancer agents. Carbazole nucleus, widely distributed in nature, is a predominant feature of a vast array of biologically active compounds. Carbazole derivatives exhibited potential antiproliferative activity against different cancer cell lines by diverse mechanisms, inclusive of arrest cell cycle and induce apoptosis, and several anticancer agents are carbazole-based compounds. Thus, carbazole derivatives represent a fertile source for discovery of novel anticancer therapeutic agents. Over the past several years, a variety of carbazole hybrids have been developed as potential anticancer agents. The present review focuses on the recent progress, from 2016 until now, in knowledge on anticancer properties, structure-activity relationships and mechanisms of action of carbazole hybrids to provide a basis for development of relevant therapeutic agents.
Collapse
Affiliation(s)
- Gangqiang Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, PR China; School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, PR China.
| | - Shaofa Sun
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Hua Guo
- School of Chemistry and Life Science, Anshan Normal University, Anshan, 114005, Liaoning, PR China
| |
Collapse
|
14
|
Vázquez Cervantes GI, González Esquivel DF, Gómez-Manzo S, Pineda B, Pérez de la Cruz V. New Immunotherapeutic Approaches for Glioblastoma. J Immunol Res 2021; 2021:3412906. [PMID: 34557553 PMCID: PMC8455182 DOI: 10.1155/2021/3412906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor with a high mortality rate. The current treatment consists of surgical resection, radiation, and chemotherapy; however, the median survival rate is only 12-18 months despite these alternatives, highlighting the urgent need to find new strategies. The heterogeneity of GBM makes this tumor difficult to treat, and the immunotherapies result in an attractive approach to modulate the antitumoral immune responses favoring the tumor eradication. The immunotherapies for GMB including monoclonal antibodies, checkpoint inhibitors, vaccines, and oncolytic viruses, among others, have shown favorable results alone or as a multimodal treatment. In this review, we summarize and discuss promising immunotherapies for GBM currently under preclinical investigation as well as in clinical trials.
Collapse
Affiliation(s)
- Gustavo Ignacio Vázquez Cervantes
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio A, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P. 04510 Distrito Federal, Mexico
| | - Dinora F. González Esquivel
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, México City 04530, Mexico
| | - Benjamín Pineda
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| | - Verónica Pérez de la Cruz
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| |
Collapse
|
15
|
Lisini D, Lettieri S, Nava S, Accordino G, Frigerio S, Bortolotto C, Lancia A, Filippi AR, Agustoni F, Pandolfi L, Piloni D, Comoli P, Corsico AG, Stella GM. Local Therapies and Modulation of Tumor Surrounding Stroma in Malignant Pleural Mesothelioma: A Translational Approach. Int J Mol Sci 2021; 22:9014. [PMID: 34445720 PMCID: PMC8396500 DOI: 10.3390/ijms22169014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022] Open
Abstract
Malignant Pleural Mesothelioma (MPM) is a rare and aggressive neoplasm of the pleural mesothelium, mainly associated with asbestos exposure and still lacking effective therapies. Modern targeted biological strategies that have revolutionized the therapy of other solid tumors have not had success so far in the MPM. Combination immunotherapy might achieve better results over chemotherapy alone, but there is still a need for more effective therapeutic approaches. Based on the peculiar disease features of MPM, several strategies for local therapeutic delivery have been developed over the past years. The common rationale of these approaches is: (i) to reduce the risk of drug inactivation before reaching the target tumor cells; (ii) to increase the concentration of active drugs in the tumor micro-environment and their bioavailability; (iii) to reduce toxic effects on normal, non-transformed cells, because of much lower drug doses than those used for systemic chemotherapy. The complex interactions between drugs and the local immune-inflammatory micro-environment modulate the subsequent clinical response. In this perspective, the main interest is currently addressed to the development of local drug delivery platforms, both cell therapy and engineered nanotools. We here propose a review aimed at deep investigation of the biologic effects of the current local therapies for MPM, including cell therapies, and the mechanisms of interaction with the tumor micro-environment.
Collapse
Affiliation(s)
- Daniela Lisini
- Cell Therapy Production Unit-UPTC and Cerebrovascular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (D.L.); (S.N.); (S.F.)
| | - Sara Lettieri
- Unit of Respiratory Diseases, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (G.A.); (L.P.); (D.P.); (A.G.C.)
| | - Sara Nava
- Cell Therapy Production Unit-UPTC and Cerebrovascular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (D.L.); (S.N.); (S.F.)
| | - Giulia Accordino
- Unit of Respiratory Diseases, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (G.A.); (L.P.); (D.P.); (A.G.C.)
| | - Simona Frigerio
- Cell Therapy Production Unit-UPTC and Cerebrovascular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (D.L.); (S.N.); (S.F.)
| | - Chandra Bortolotto
- Unit of Radiology, Department of Intensive Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy;
| | - Andrea Lancia
- Unit of Radiation Therapy, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (A.L.); (A.R.F.)
| | - Andrea Riccardo Filippi
- Unit of Radiation Therapy, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (A.L.); (A.R.F.)
| | - Francesco Agustoni
- Unit of Oncology, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy;
| | - Laura Pandolfi
- Unit of Respiratory Diseases, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (G.A.); (L.P.); (D.P.); (A.G.C.)
| | - Davide Piloni
- Unit of Respiratory Diseases, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (G.A.); (L.P.); (D.P.); (A.G.C.)
| | - Patrizia Comoli
- Cell Factory and Pediatric Hematology-Oncology Unit, IRCCS Fondazione Policlinico San Matteo, 27100 Pavia, Italy;
| | - Angelo Guido Corsico
- Unit of Respiratory Diseases, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (G.A.); (L.P.); (D.P.); (A.G.C.)
| | - Giulia Maria Stella
- Unit of Respiratory Diseases, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (G.A.); (L.P.); (D.P.); (A.G.C.)
| |
Collapse
|
16
|
Lara-Velazquez M, Shireman JM, Lehrer EJ, Bowman KM, Ruiz-Garcia H, Paukner MJ, Chappell RJ, Dey M. A Comparison Between Chemo-Radiotherapy Combined With Immunotherapy and Chemo-Radiotherapy Alone for the Treatment of Newly Diagnosed Glioblastoma: A Systematic Review and Meta-Analysis. Front Oncol 2021; 11:662302. [PMID: 34046356 PMCID: PMC8144702 DOI: 10.3389/fonc.2021.662302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Background Immunotherapy for GBM is an emerging field which is increasingly being investigated in combination with standard of care treatment options with variable reported success rates. Objective To perform a systematic review of the available data to evaluate the safety and efficacy of combining immunotherapy with standard of care chemo-radiotherapy following surgical resection for the treatment of newly diagnosed GBM. Methods A literature search was performed for published clinical trials evaluating immunotherapy for GBM from January 1, 2000, to October 1, 2020, in PubMed and Cochrane using PICOS/PRISMA/MOOSE guidelines. Only clinical trials with two arms (combined therapy vs. control therapy) were included. Outcomes were then pooled using weighted random effects model for meta-analysis and compared using the Wald-type test. Primary outcomes included 1-year overall survival (OS) and progression-free survival (PFS), secondary outcomes included severe adverse events (SAE) grade 3 or higher. Results Nine randomized phase II and/or III clinical trials were included in the analysis, totaling 1,239 patients. The meta-analysis revealed no statistically significant differences in group’s 1-year OS [80.6% (95% CI: 68.6%–90.2%) vs. 72.6% (95% CI: 65.7%–78.9%), p = 0.15] or in 1-year PFS [37% (95% CI: 26.4%–48.2%) vs. 30.4% (95% CI: 25.4%–35.6%) p = 0.17] when the immunotherapy in combination with the standard of care group (combined therapy) was compared to the standard of care group alone (control). Severe adverse events grade 3 to 5 were more common in the immunotherapy and standard of care group than in the standard of care group (47.3%, 95% CI: 20.8–74.6%, vs 43.8%, 95% CI: 8.7–83.1, p = 0.81), but this effect also failed to reach statistical significance. Conclusion Our results suggests that immunotherapy can be safely combined with standard of care chemo-radiotherapy without significant increase in grade 3 to 5 SAE; however, there is no statistically significant increase in overall survival or progression free survival with the combination therapy.
Collapse
Affiliation(s)
- Montserrat Lara-Velazquez
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, United States
| | - Jack M Shireman
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, United States
| | - Eric J Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kelsey M Bowman
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, United States
| | - Henry Ruiz-Garcia
- Department of Neurosurgery and Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Mitchell J Paukner
- Department of Statistics, Biostatistics and Medical Informatics, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, United States
| | - Richard J Chappell
- Department of Statistics, Biostatistics and Medical Informatics, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, United States
| | - Mahua Dey
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, United States
| |
Collapse
|
17
|
Kumar D, Gauthami S, Bayry J, Kaveri SV, Hegde NR. Antibody Therapy: From Diphtheria to Cancer, COVID-19, and Beyond. Monoclon Antib Immunodiagn Immunother 2021; 40:36-49. [PMID: 33900819 DOI: 10.1089/mab.2021.0004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The dawn of the 20th century saw the formative years of developments in immunology. In particular, immunochemistry, specifically pertaining to antibodies, was extensively studied. These studies laid the foundations for employing antibodies in a variety of ways. Not surprisingly, antibodies have been used for applications ranging from biomedical research to disease diagnostics and therapeutics to evaluation of immune responses during natural infection and those elicited by vaccines. Despite recent advancements in cellular immunology and the excitement of T cell therapy, use of antibodies represents a large proportion of immunotherapeutic approaches as well as clinical interventions. Polyclonal antibodies in the form of plasma or sera continue to be used to treat a number of diseases, including autoimmune disorders, cancers, and infectious diseases. Historically, antisera to toxins have been the longest serving biotherapeutics. In addition, intravenous immunoglobulins (IVIg) have been extensively used to treat not only immunodeficiency conditions but also autoimmune disorders. Beyond the simplistic suppositions of their action, the IVIg have also unraveled the immune regulatory and homeostatic ramifications of their use. The advent of monoclonal antibodies (MAbs), on the other hand, has provided a clear pathway for their development as drug molecules. MAbs have found a clear place in the treatment of cancers and extending lives and have been used in a variety of other conditions. In this review, we capture the important developments in the therapeutic applications of antibodies to alleviate disease, with a focus on some of the recent developments.
Collapse
Affiliation(s)
| | - Sulgey Gauthami
- National Institute of Animal Biotechnology, Hyderabad, India
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France.,Indian Institute of Technology Palakkad, Palakkad, Kerala, India
| | - Srinivas V Kaveri
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique (CNRS) Bureau India, IFI, New Delhi, India
| | | |
Collapse
|
18
|
Gao Z, Tao Y, Lai Y, Wang Q, Li Z, Peng S, Chen J, Cai W, Li K, Huang H. Immune Cytolytic Activity as an Indicator of Immune Checkpoint Inhibitors Treatment for Prostate Cancer. Front Bioeng Biotechnol 2020; 8:930. [PMID: 32850758 PMCID: PMC7423880 DOI: 10.3389/fbioe.2020.00930] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/20/2020] [Indexed: 01/22/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) treatment is becoming a new hope for cancer treatment. However, most prostate cancer (PCa) patients do not benefit from it. In order to achieve the accuracy of ICIs treatment in PCa and reduce unnecessary costs for patients, we have analyzed the data from TCGA database to find a indicator that can assist the choice of treatment. By analyzing the data of PCa patients with TMB analysis and immune infiltration analysis, we found the expression of immune cells in different immune infiltration groups. Commonly used markers of ICIs, expressed on CD8+ T cell, were highly expressed in the high immune group. Then we used the forimmune cytolytic activity (CYT) to determine its relationship with the target of ICIs treatment. Through the analysis of CYT score and the ligands of immune checkpoints, we found that there was a significant correlation between them. With the increase of CYT score, the expression of CD80/86, PD-L1/L2, TNFSF14, and LGALS9 also increased gradually. Similarly, CD8+ T cells were significantly increased in the CYT high group compared with the CYT low group in PRAD. The present research provides novel insights into the immune microenvironment of PRAD and potential immunotherapies. The proposed CYT score is a clinically promising indicator that can serve as a marker to assist anti-PD-L1 or other ICIs treatment. At the same time, it also provides a basis for the selection of other immune checkpoint drugs.
Collapse
Affiliation(s)
- Ze Gao
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiran Tao
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiming Lai
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiong Wang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Zean Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shirong Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junxiu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenli Cai
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kaiwen Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangzhou Twelfth People's Hospital, Guangzhou, China
| |
Collapse
|
19
|
Costa de Oliveira R, Soares Pontes G, Kostyuk A, Coutinho Camargo GB, Dhyani A, Shvydenko T, Shvydenko K, Grafov A. Anticancer and Immunomodulatory Activities of a Novel Water-Soluble Derivative of Ellipticine. Molecules 2020; 25:molecules25092130. [PMID: 32370100 PMCID: PMC7248987 DOI: 10.3390/molecules25092130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/26/2022] Open
Abstract
Cancer still remains a major public health concern around the world and the search for new potential antitumor molecules is essential for fighting the disease. This study evaluated the anticancer and immunomodulatory potential of the newly synthetized ellipticine derivate: sodium bromo-5,11-dimethyl-6H-pyrido[4,3-b]carbazole-7-sulfonate (Br-Ell-SO3Na). It was prepared by the chlorosulfonation of 9-bromoellipticine. The ellipticine-7-sulfonic acid itself is not soluble, but its saponification with sodium hydroxide afforded a water-soluble sodium salt. The cytotoxicity of Br-Ell-SO3Na was tested against cancerous (K562 cell line) and non-cancerous cells (Vero cell line and human peripheral blood mononuclear cells (PBMC)) using a Methylthiazoletetrazolium (MTT) assay. Cell cycle arrest was assessed by flow cytometry and the immunomodulatory activity was analyzed through an enzyme-linked immunosorbent assay (ELISA). The results showed that the Br-Ell-SO3Na molecule has specific anticancer activity (IC50 = 35 µM) against the K562 cell line, once no cytotoxicity effect was verified against non-cancerous cells. Cell cycle analysis demonstrated that K562 cells treated with Br-Ell-SO3Na were arrested in the phase S. Moreover, the production of IL-6 increased and the expression of IL-8 was inhibited in the human PBMC treated with Br-Ell-SO3Na. The results demonstrated that Br-Ell-SO3Na is a promising anticancer molecule attested by its noteworthy activity against the K562 tumor cell line and immunomodulatory activity in human PBMC cells.
Collapse
Affiliation(s)
- Regiane Costa de Oliveira
- Programa de Pós-Graduação em Hematologia, Universidade do Estado do Amazonas, Av. Djalma Batista, 3578-Flores, Manaus-AM, Brazil; (R.C.d.O.); (G.S.P.); (G.B.C.C.)
| | - Gemilson Soares Pontes
- Programa de Pós-Graduação em Hematologia, Universidade do Estado do Amazonas, Av. Djalma Batista, 3578-Flores, Manaus-AM, Brazil; (R.C.d.O.); (G.S.P.); (G.B.C.C.)
- Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2.936-Petrópolis-Manaus-AM, Brazil;
| | - Aleksandr Kostyuk
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Str. 5, 02660 Kyiv, Ukraine; (A.K.); (K.S.)
| | - Gabriel B. Coutinho Camargo
- Programa de Pós-Graduação em Hematologia, Universidade do Estado do Amazonas, Av. Djalma Batista, 3578-Flores, Manaus-AM, Brazil; (R.C.d.O.); (G.S.P.); (G.B.C.C.)
| | - Anamika Dhyani
- Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2.936-Petrópolis-Manaus-AM, Brazil;
| | - Tetiana Shvydenko
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Str. 5, 02660 Kyiv, Ukraine; (A.K.); (K.S.)
- JSC “Farmak”, Kyrylivska str. 63, 04080 Kyiv, Ukraine
- Correspondence:
| | - Kostiantyn Shvydenko
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Str. 5, 02660 Kyiv, Ukraine; (A.K.); (K.S.)
- JSC “Farmak”, Kyrylivska str. 63, 04080 Kyiv, Ukraine
| | - Andriy Grafov
- Department of Chemistry, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
20
|
Virus-Like Particles as an Immunogenic Platform for Cancer Vaccines. Viruses 2020; 12:v12050488. [PMID: 32349216 PMCID: PMC7291217 DOI: 10.3390/v12050488] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
Virus-like particles (VLP) spontaneously assemble from viral structural proteins. They are naturally biocompatible and non-infectious. VLP can serve as a platform for many potential vaccine epitopes, display them in a dense repeating array, and elicit antibodies against non-immunogenic substances, including tumor-associated self-antigens. Genetic or chemical conjugation facilitates the multivalent display of a homologous or heterologous epitope. Most VLP range in diameter from 25 to 100 nm and, in most cases, drain freely into the lymphatic vessels and induce antibodies with high titers and affinity without the need for additional adjuvants. VLP administration can be performed using different strategies, regimens, and doses to improve the immunogenicity of the antigen they expose on their surface. This article summarizes the features of VLP and presents them as a relevant platform technology to address not only infectious diseases but also chronic diseases and cancer.
Collapse
|
21
|
Greiner J, Götz M, Hofmann S, Schrezenmeier H, Wiesneth M, Bullinger L, Döhner H, Schneider V. Specific T-cell immune responses against colony-forming cells including leukemic progenitor cells of AML patients were increased by immune checkpoint inhibition. Cancer Immunol Immunother 2020; 69:629-640. [PMID: 32020256 DOI: 10.1007/s00262-020-02490-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 01/18/2020] [Indexed: 02/07/2023]
Abstract
The efficacy of immunotherapies in cancer treatment becomes more and more apparent not only in different solid tumors but also in hematological malignancies. However, in acute myeloid leukemia (AML), mechanisms to increase the efficacy of immunotherapeutic approaches have to be further elucidated. Targeting leukemic progenitor and stem cells (LPC/LSC) by specific CTL, for instance, in an adjuvant setting or in minimal residual disease, might be an option to prevent relapse of AML or to treat MRD. Therefore, we investigated the influence of immune checkpoint inhibitors on LAA-specific immune responses by CTL against leukemic myeloid blasts and colony-forming cells including leukemic progenitor cells (CFC/LPC). In functional immunoassays like CFU/CFI (colony-forming units/immunoassays) and ELISpot analysis, we detected specific LAA-directed immune responses against CFC/LPC that are postulated to be the source population of relapse of the disease. The addition of nivolumab (anti-PD-1) significantly increases LAA-directed immune responses against CFC/LPC, no effect is seen when ipilimumab (anti-CTLA-4) is added. The combination of ipilimumab and nivolumab does not improve the effect compared to nivolumab alone. The anti-PD1-directed immune response correlates to PD-L1 expression on progenitor cells. Our data suggest that immunotherapeutic approaches have the potential to target malignant CFC/LPC and anti-PD-1 antibodies could be an immunotherapeutic approach in AML. Moreover, combination with LAA-directed vaccination strategies might also open interesting application possibilities.
Collapse
Affiliation(s)
- Jochen Greiner
- Department of Internal Medicine III, University of Ulm, Helmholtzstr. 10, 89081, Ulm, Germany. .,Department of Internal Medicine, Diakonie Hospital Stuttgart, Stuttgart, Germany.
| | - Marlies Götz
- Department of Internal Medicine III, University of Ulm, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Susanne Hofmann
- Department of Internal Medicine III, University of Ulm, Helmholtzstr. 10, 89081, Ulm, Germany.,Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg - Hessia, Ulm, Germany
| | - Markus Wiesneth
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg - Hessia, Ulm, Germany
| | - Lars Bullinger
- Department of Internal Medicine III, University of Ulm, Helmholtzstr. 10, 89081, Ulm, Germany.,Department of Hematology, Oncology and Tumorimmunology, Charité University Medicine Berlin, Berlin, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, University of Ulm, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Vanessa Schneider
- Department of Internal Medicine III, University of Ulm, Helmholtzstr. 10, 89081, Ulm, Germany
| |
Collapse
|
22
|
Magalhaes I, Carvalho-Queiroz C, Hartana CA, Kaiser A, Lukic A, Mints M, Nilsson O, Grönlund H, Mattsson J, Berglund S. Facing the future: challenges and opportunities in adoptive T cell therapy in cancer. Expert Opin Biol Ther 2019; 19:811-827. [PMID: 30986360 DOI: 10.1080/14712598.2019.1608179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION In recent years, immunotherapy for the treatment of solid cancer has emerged as a promising therapeutic alternative. Adoptive cell therapy (ACT), especially T cell-based, has been found to cause tumor regression and even cure in a percentage of treated patients. Checkpoint inhibitors further underscore the potential of the T cell compartment in the treatment of cancer. Not all patients respond to these treatments; however, many challenges remain. AREAS COVERED This review covers the challenges and progress in tumor antigen target identification and selection, and cell product manufacturing for T cell ACT. Tumor immune escape mechanisms and strategies to overcome those in the context of T cell ACT are also discussed. EXPERT OPINION The immunotherapy toolbox is rapidly expanding and improving, and the future promises further breakthroughs in the T cell ACT field. The heterogeneity of the tumor microenvironment and the multiplicity of tumor immune escape mechanisms pose formidable challenges to successful T cell immunotherapy in solid tumors, however. Individualized approaches and strategies combining treatments targeting different immunotherapeutic aspects will be needed in order to expand the applicability and improve the response rates in future.
Collapse
Affiliation(s)
- Isabelle Magalhaes
- a Department of Oncology-Pathology , Karolinska Institutet , Stockholm , Sweden
| | - Claudia Carvalho-Queiroz
- b Therapeutic Immune Design, Department of Clinical Neuroscience , Karolinska Institutet , Stockholm , Sweden
| | - Ciputra Adijaya Hartana
- c Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital , Cambridge , MA , USA
| | - Andreas Kaiser
- b Therapeutic Immune Design, Department of Clinical Neuroscience , Karolinska Institutet , Stockholm , Sweden
| | - Ana Lukic
- b Therapeutic Immune Design, Department of Clinical Neuroscience , Karolinska Institutet , Stockholm , Sweden
| | - Michael Mints
- a Department of Oncology-Pathology , Karolinska Institutet , Stockholm , Sweden.,d Department of Surgical and Perioperative Sciences , Umeå University, Umeå, Sweden.,e Blood and Marrow Transplant Program, Medical Oncology and Hematology , Princess Margaret Cancer Center , Toronto , Canada.,f Department of Medicine , University of Toronto , Toronto , Canada
| | - Ola Nilsson
- b Therapeutic Immune Design, Department of Clinical Neuroscience , Karolinska Institutet , Stockholm , Sweden
| | - Hans Grönlund
- b Therapeutic Immune Design, Department of Clinical Neuroscience , Karolinska Institutet , Stockholm , Sweden
| | - Jonas Mattsson
- a Department of Oncology-Pathology , Karolinska Institutet , Stockholm , Sweden.,f Department of Medicine , University of Toronto , Toronto , Canada
| | - Sofia Berglund
- a Department of Oncology-Pathology , Karolinska Institutet , Stockholm , Sweden.,b Therapeutic Immune Design, Department of Clinical Neuroscience , Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
23
|
Zhang D, Dai L, Yang Z, Wang X, LanNing Y. Association of STMN1 with survival in solid tumors: A systematic review and meta-analysis. Int J Biol Markers 2019; 34:108-116. [PMID: 30966849 DOI: 10.1177/1724600819837210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The prognostic value of Stathmin 1 (STMN1) in malignant solid tumors remains controversial. Thus, we conducted this meta-analysis to summarize the potential value of STMN1 as a biomarker for predicting overall survival in patients with solid tumor. METHODS We systematically searched eligible studies in PubMed, Web of Science, and EMBASE from the establishment date of these databases to September 2018. Hazard ratio (HR) and its 95% confidence interval (CI) was used to assess the association between STMN1 expression and overall survival. RESULTS A total of 25 studies with 4625 patients were included in this meta-analysis. Our combined results showed that high STMN1 expression was associated with poor overall survival in solid tumors (HR = 1.85, 95% CI 1.55, 2.21). In general, our subgroup and sensitivity analyses demonstrated that our combined results were stable and reliable. However, from the results of the subgroups we found that high STMN1 expression was not related to overall survival in colorectal cancer and endometrial cancer anymore, suggesting that much caution should be taken to interpret our combined result, and more studies with large sample sizes are required to further explore the prognostic value of STMN1 expression in the specific type of tumors, especially colorectal cancer and endometrial cancer. CONCLUSIONS STMN1 could serve as a prognostic biomarker and could be developed as a valuable therapeutic target for patients with solid tumors. However, due to the limitations of the present meta-analysis, this conclusion should be taken with caution. Further studies adequately designed are required to confirm our findings.
Collapse
Affiliation(s)
- Dan Zhang
- 1 Department of General Surgery, Lanzhou University Second Clinical Medical College, Lanzhou University, Lanzhou, China.,2 Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, Gansu Province, China
| | - Lizhen Dai
- 3 Department of Obstetrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - ZengXi Yang
- 1 Department of General Surgery, Lanzhou University Second Clinical Medical College, Lanzhou University, Lanzhou, China.,2 Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, Gansu Province, China
| | - XiChen Wang
- 1 Department of General Surgery, Lanzhou University Second Clinical Medical College, Lanzhou University, Lanzhou, China.,2 Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, Gansu Province, China
| | - Yin LanNing
- 1 Department of General Surgery, Lanzhou University Second Clinical Medical College, Lanzhou University, Lanzhou, China.,2 Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, Gansu Province, China
| |
Collapse
|
24
|
Immunomodulatory Effects of Drugs for Effective Cancer Immunotherapy. JOURNAL OF ONCOLOGY 2018; 2018:8653489. [PMID: 30498512 PMCID: PMC6222238 DOI: 10.1155/2018/8653489] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022]
Abstract
Recent advances in cancer immunotherapy, including immune checkpoint inhibitors or adoptive T cell therapies, have contributed to better outcomes in cancer patients. However, there are still many cancers with no cure. Therefore, combinations of several treatment strategies are being explored, and enhancing anticancer immunity will play an important role to combat the disease. There have been several reports on the immune-modulatory effects of commonly used drugs, namely, statin, metformin, and angiotensin receptor blockers (ARBs), which suggest that these drugs could enhance immunity against cancer cells. Other anticancer drugs, such as anthracyclines, thalidomides, lenalidomides, and hypomethylating drugs, could also strengthen the immune system to attack cancer cells at a relatively low dose. Hence, these drugs might contribute to better outcomes in cancer patients.
Collapse
|