1
|
Tanaka T, Koga H, Suzuki H, Iwamoto H, Sakaue T, Masuda A, Nakamura T, Akiba J, Yano H, Torimura T, Kawaguchi T. Anti-PD-L1 antibodies promote cellular proliferation by activating the PD-L1-AXL signal relay in liver cancer cells. Hepatol Int 2024; 18:984-997. [PMID: 37553470 DOI: 10.1007/s12072-023-10572-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/08/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are emerging treatments for advanced hepatocellular carcinoma (HCC); however, evidence has shown they may induce hyperprogressive disease via unexplained mechanisms. METHODS In this study, we investigated the possible stimulative effect of ICIs on programmed cell death-ligand 1 (PD-L1)-harboring liver cancer cells under immunocompetent cell-free conditions. RESULTS The sarcomatous HAK-5 cell line displayed the highest expression of PD-L1 among 11 human liver cancer cell lines used in this study. HLF showed moderate expression, while HepG2, Hep3B, and HuH-7 did not show any. Moreover, sarcomatous HCC tissues expressed high levels of PD-L1. We observed approximately 20% increase in cell proliferation in HAK-5 cells treated with anti-PD-L1 antibodies, such as durvalumab and atezolizumab, for 48 h compared with that of those treated with the control IgG and the anti-PD-1 antibody pembrolizumab. No response to durvalumab or atezolizumab was shown in PD-L1-nonexpressing cells. Loss-of-function and gain-of-function experiments for PD-L1 in HAK-5 and HepG2 cells resulted in a significant decrease and increase in cell proliferation, respectively. Phosphorylated receptor tyrosine kinase array and immunoprecipitation revealed direct interactions between PD-L1 and AXL in tumor cells. This was stabilized by extrinsic anti-PD-L1 antibodies in a glycosylated PD-L1-dependent manner. Activation of AXL, triggering signal relay to the Akt and Erk pathways, boosted tumor cell proliferation both in vitro and in xenografted tumors in NOD/SCID mice. CONCLUSION Collectively, this suggests that anti-PD-L1 antibodies stimulate cell proliferation via stabilization of the PD-L1-AXL complex in specific types of liver cancer, including in HCC with mesenchymal components. SIGNIFICANCE Therapeutic anti-PD-L1 antibodies promote cell proliferation by stabilizing the PD-L1-AXL complex in PD-L1-abundant neoplasms, including in HCC with mesenchymal components. Such a mechanism may contribute to the development of hyperprogressive disease.
Collapse
MESH Headings
- Humans
- Liver Neoplasms/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/immunology
- Cell Proliferation/drug effects
- B7-H1 Antigen/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/immunology
- Mice
- Animals
- Cell Line, Tumor
- Signal Transduction
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Receptor Protein-Tyrosine Kinases/immunology
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Proto-Oncogene Proteins/metabolism
- Axl Receptor Tyrosine Kinase
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Toshimitsu Tanaka
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Hironori Koga
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, 67 Asahi-machi, Kurume, 830-0011, Japan.
| | - Hiroyuki Suzuki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Hideki Iwamoto
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Takahiko Sakaue
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Atsutaka Masuda
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Toru Nakamura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Jun Akiba
- Department of Diagnostic Pathology, Kurume University Hospital, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Hirohisa Yano
- Department of Pathology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| |
Collapse
|
2
|
Therapeutic targets and biomarkers of tumor immunotherapy: response versus non-response. Signal Transduct Target Ther 2022; 7:331. [PMID: 36123348 PMCID: PMC9485144 DOI: 10.1038/s41392-022-01136-2] [Citation(s) in RCA: 241] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/25/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Cancers are highly complex diseases that are characterized by not only the overgrowth of malignant cells but also an altered immune response. The inhibition and reprogramming of the immune system play critical roles in tumor initiation and progression. Immunotherapy aims to reactivate antitumor immune cells and overcome the immune escape mechanisms of tumors. Represented by immune checkpoint blockade and adoptive cell transfer, tumor immunotherapy has seen tremendous success in the clinic, with the capability to induce long-term regression of some tumors that are refractory to all other treatments. Among them, immune checkpoint blocking therapy, represented by PD-1/PD-L1 inhibitors (nivolumab) and CTLA-4 inhibitors (ipilimumab), has shown encouraging therapeutic effects in the treatment of various malignant tumors, such as non-small cell lung cancer (NSCLC) and melanoma. In addition, with the advent of CAR-T, CAR-M and other novel immunotherapy methods, immunotherapy has entered a new era. At present, evidence indicates that the combination of multiple immunotherapy methods may be one way to improve the therapeutic effect. However, the overall clinical response rate of tumor immunotherapy still needs improvement, which warrants the development of novel therapeutic designs as well as the discovery of biomarkers that can guide the prescription of these agents. Learning from the past success and failure of both clinical and basic research is critical for the rational design of studies in the future. In this article, we describe the efforts to manipulate the immune system against cancer and discuss different targets and cell types that can be exploited to promote the antitumor immune response.
Collapse
|