1
|
Stutz R, Meyer C, Kaiser E, Goedicke-Fritz S, Schroeder HW, Bals R, Haertel C, Rogosch T, Kerzel S, Zemlin M. Attenuated asthma phenotype in mice with a fetal-like antigen receptor repertoire. Sci Rep 2021; 11:14199. [PMID: 34244568 PMCID: PMC8270943 DOI: 10.1038/s41598-021-93553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/21/2021] [Indexed: 11/09/2022] Open
Abstract
We hypothesized that the scarcity of N-nucleotides might contribute to the inability of the neonate to mount a robust allergic immune response. To test this, we used terminal deoxyribunucleotidyl Transferase deficient (TdT-/-) mice, which express "fetal-like" T cell receptor and immunoglobulin repertoires with largely germline-encoded CDR3 regions. Intraperitoneal sensitization was followed by aerosol provocation with either PBS or the allergen OVA in both TdT-/- mice and wild-type mice to develop allergic respiratory inflammation. The effects of this procedure were investigated by lung function test, immunological analysis of serum and brochoalveolar lavage. The local TH2 cytokine milieu was significantly attenuated in TdT-/- mice. Within this group, the induction of total IgE levels was also significantly reduced after sensitization. TdT-/- mice showed a tendency toward reduced eosinophilic inflow into the bronchial tubes, which was associated with the elimination of respiratory hyperreactivity. In conclusion, in a murine model of allergic airway inflammation, the expression of fetal-like antigen receptors was associated with potent indications of a reduced ability to mount an asthma phenotype. This underlines the importance of somatically-generated antigen-receptor repertoire diversity in type one allergic immune responses and suggests that the fetus may be protected from allergic responses, at least in part, by controlling N addition.
Collapse
Affiliation(s)
- Regine Stutz
- Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany
| | - Christopher Meyer
- Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany
| | - Elisabeth Kaiser
- Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany
| | - Sybelle Goedicke-Fritz
- Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany.,Department of Pediatrics, Philipps-University Marburg, Marburg, Germany
| | - Harry W Schroeder
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert Bals
- Department of Internal Medicine V-Pulmonology, Allergology and Critical Care Medicine, Saarland University, Saarland University Medical School, Homburg, Germany
| | - Christoph Haertel
- Department of Pediatrics, Würzburg University Medical Center, Würzburg, Germany
| | - Tobias Rogosch
- Department of Pediatrics, Philipps-University Marburg, Marburg, Germany
| | - Sebastian Kerzel
- Department of Pediatrics, Philipps-University Marburg, Marburg, Germany.,Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg, Campus St. Hedwig, Regensburg, Germany
| | - Michael Zemlin
- Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany. .,Department of Pediatrics, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
2
|
Badger-Emeka LI, Emeka PM, Thirugnanasambantham K, Ibrahim HIM. Anti-Allergic Potential of Cinnamaldehyde via the Inhibitory Effect of Histidine Decarboxylase (HDC) Producing Klebsiella pneumonia. Molecules 2020; 25:molecules25235580. [PMID: 33261109 PMCID: PMC7730296 DOI: 10.3390/molecules25235580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 11/16/2022] Open
Abstract
Allergy is an immunological disorder that develops in response to exposure to an allergen, and histamines mediate these effects via histidine decarboxylase (HDC) activity at the intracellular level. In the present study, we developed a 3D model of Klebsiella pneumoniae histidine decarboxylase (HDC) and analyzed the HDC inhibitory potential of cinnamaldehyde (CA) and subsequent anti-allergic potential using a bacterial and mammalian mast cell model. A computational and in vitro study using K. pneumonia revealed that CA binds to HDC nearby the pyridoxal-5'-phosphate (PLP) binding site and inhibited histamine synthesis in a bacterial model. Further study using a mammalian mast cell model also showed that CA decreased the levels of histamine in the stimulated RBL-2H3 cell line and attenuated the release of β-hexoseaminidase and cell degranulation. In addition, CA treatment also significantly suppressed the levels of pro-inflammatory cytokines TNF-α and IL-6 and the nitric oxide (NO) level in the stimulated mast cells. A gene expression and Western blotting study revealed that CA significantly downregulated the expressions of MAPKp38/ERK and its downstream pro-allergic mediators that are involved in the signaling pathway in mast cell cytokine synthesis. This study further confirms that CA has the potential to attenuate mast cell activation by inhibiting HDC and modifying the process of allergic disorders.
Collapse
Affiliation(s)
- Lorina I. Badger-Emeka
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: ; Tel.: +966-(0)5-3654-2793
| | - Promise Madu Emeka
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | | | - Hairul Islam M. Ibrahim
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
3
|
Dhakal H, Yang EJ, Lee S, Kim MJ, Baek MC, Lee B, Park PH, Kwon TK, Khang D, Song KS, Kim SH. Avenanthramide C from germinated oats exhibits anti-allergic inflammatory effects in mast cells. Sci Rep 2019; 9:6884. [PMID: 31053741 PMCID: PMC6499795 DOI: 10.1038/s41598-019-43412-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
Mast cells play a crucial role in allergic diseases via the release of inflammatory mediators, particularly histamine and pro-inflammatory cytokines. Avenanthramide (Avn) C, a polyphenol found mainly in oats, is known to exhibit various biological properties. In this study, we aimed to evaluate the effectiveness of Avn C from germinated oats against mast cell-mediated allergic inflammation. For the in vitro study, RBL-2H3, mouse bone marrow-derived mast cells and rat peritoneal mast cells were used. Avn C (1–100 nM) inhibited the immunoglobulin (Ig)E-stimulated mast cells degranulation by suppressing phosphorylation of phosphoinositide 3-kinase and phospholipase Cγ1 and decreasing intracellular calcium levels. It inhibited IgE-stimulated secretion of inflammatory cytokines via suppression of FcεRI-mediated signaling proteins Lyn, Syk, Akt, and nuclear factor-κB. To verify the effects of Avn C in vivo, ovalbumin-induced active systemic anaphylaxis (ASA) and IgE-mediated passive cutaneous anaphylaxis (PCA) models were used. Oral administration of Avn C dose-dependently attenuated the ASA reactions, as evidenced by the inhibition of hypothermia and reduction of elevated serum histamine, IgE, and interleukin-4 levels. Avn C also inhibited the PCA reactions, such as ear swelling and plasma extravasation. Our results suggested that Avn C from germinated oats might be a possible therapeutic candidate for mast cell-mediated allergic inflammation.
Collapse
Affiliation(s)
- Hima Dhakal
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Eun-Ju Yang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Soyoung Lee
- Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Min-Jong Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Dongwoo Khang
- Department of Physiology, School of Medicine, Gachon University, Incheon, Republic of Korea.
| | - Kyung-Sik Song
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea. .,GHAM BioPharm Co. Ltd., College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea.
| | - Sang-Hyun Kim
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea. .,Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
4
|
Saggini A, Maccauro G, Tripodi D, De Lutiis MA, Conti F, Felaco P, Fulcheri M, Galzio R, Caraffa A, Antinolfi P, Felaco M, Pandolfi F, Sabatino G, Neri G, Shaik-Dasthagirisaheb YB. Allergic inflammation: role of cytokines with special emphasis on IL-4. Int J Immunopathol Pharmacol 2011; 24:305-11. [PMID: 21658305 DOI: 10.1177/039463201102400204] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This review examines recent articles on the relationship of cytokines to allergy and inflammation with particular emphasis on interleukin (IL)-4. The objective of this article is therefore to review published studies to identify cytokines consistently involved in allergic inflammation. Proinflammatory cytokines, including IL-4, IL-5, IL-13 and GM-CSF along with TNF-alpha play a role in allergen-induced airway leukocyte recruitment and these cytokines can be generated by T mast cells and other cells. In addition, IL-9, IL-25, IL-33, IL-17, IL-27 and IFN-gamma are deeply involved in the regulation of asthma. Blocking the effect of these proinflammatory cytokines might provide new therapeutic approaches for the control of allergy and inflammation.
Collapse
|