1
|
Wang T, Huang Y, Jiang P, Yuan X, Long Q, Yan X, Huang Y, Wang Z, Li C. Research progress on anti-inflammatory drugs for preventing colitis-associated colorectal cancer. Int Immunopharmacol 2025; 144:113583. [PMID: 39580861 DOI: 10.1016/j.intimp.2024.113583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
Colorectal cancer (CRC) is the third most prevalent malignancy worldwide. Inflammatory bowel diseases (IBD) encompass a group of chronic intestinal inflammatory disorders, including ulcerative colitis (UC) and Crohn's disease (CD). As a chronic inflammatory bowel disease, UC may persist and elevate the risk of malignancy, thereby contributing to the development of colorectal cancer, known as colitis-associated colorectal cancer (CAC). Chronic intestinal inflammation is a significant risk factor for colorectal cancer, and the incidence of colitis-associated colorectal cancer continues to rise. Current studies indicate that therapeutic agents targeting inflammation and key molecules or signaling pathways involved in the inflammatory process may effectively prevent and treat CAC. Mechanistically, drugs with anti-inflammatory or modulatory effects on inflammation-related pathways may exert preventive or therapeutic roles in CAC through multiple molecules or signaling pathways implicated in tumor development. Moreover, the development or discovery of novel drugs with anti-inflammatory properties to prevent or delay CAC progression is becoming an emerging field in fighting against CRC. Therefore, this review aims to summarize drugs that prevent or delay CAC through modulating anti-inflammatory pathways. First, we categorize the published studies exploring the role of anti-inflammatory in CAC prevention. Second, we highlight the specific molecular mechanisms underlying the anti-inflammatory effect of the above-mentioned drugs. Finally, we discuss the potential and challenges associated with clinical application of these drugs. It is hoped that this review offers new insights for further drug development and mechanism exploration.
Collapse
Affiliation(s)
- Tong Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | | | - Peng Jiang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Xin Yuan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Qian Long
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Xiaochen Yan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Yuwei Huang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Zongkui Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China.
| | - Changqing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China.
| |
Collapse
|
2
|
Shahgoli VK, Noorolyai S, Ahmadpour Youshanlui M, Saeidi H, Nasiri H, Mansoori B, Holmskov U, Baradaran B. Inflammatory bowel disease, colitis, and cancer: unmasking the chronic inflammation link. Int J Colorectal Dis 2024; 39:173. [PMID: 39465427 PMCID: PMC11513726 DOI: 10.1007/s00384-024-04748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Chronic inflammation is a significant driver in the development of various diseases, including cancer. Colitis-associated colorectal cancer (CA-CRC) refers to the increased risk of colorectal cancer in individuals with chronic inflammatory bowel diseases (IBD) such as ulcerative colitis and Crohn's disease. METHODS This narrative review examines the link between chronic inflammation and CA-CRC. A comprehensive literature search was conducted using PubMed, Scopus, and Web of Science, focusing on studies published between 2000 and 2024. Studies were selected based on relevance to the role of inflammation in CA-CRC, specifically targeting molecular pathways and clinical implications. Both clinical and mechanistic studies were reviewed. CONCLUSION Sustained inflammation in the colon fosters a pro-tumorigenic environment, leading to the initiation and progression of CA-CRC. Prevention strategies must focus on controlling chronic inflammation, optimizing IBD management, and implementing regular screenings. Emerging therapies targeting key inflammatory pathways and immune responses, along with microbiome modulation, hold promise for reducing CA-CRC risk. Understanding these molecular mechanisms provides a path toward personalized treatment and better outcomes for patients with IBD at risk of colorectal cancer.
Collapse
Affiliation(s)
- Vahid Khaze Shahgoli
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Saeed Noorolyai
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hossein Saeidi
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Nasiri
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Uffe Holmskov
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Behzad Baradaran
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Atretkhany KSN, Drutskaya MS, Nedospasov SA, Grivennikov SI, Kuprash DV. Chemokines, cytokines and exosomes help tumors to shape inflammatory microenvironment. Pharmacol Ther 2016; 168:98-112. [PMID: 27613100 DOI: 10.1016/j.pharmthera.2016.09.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Relationship between inflammation and cancer is now well-established and represents a paradigm that our immune response does not necessarily serves solely to protect us from infections and cancer. Many specific mechanisms that link chronic inflammation to cancer promotion and metastasis have been uncovered in the recent years. Here we are focusing on the effects that tumors may exert on inflammatory cascades, tuning the immune system ability to cause tumor promotion or regression. In particular, we discuss the contributions of chemokines, cytokines and exosomes to the processes such as induction of inflammation and tumorigenesis. Overall, tumor-elicited inflammation is a key driver of tumor progression and an essential component of tumor microenvironment.
Collapse
Affiliation(s)
- K-S N Atretkhany
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Vavilova Str. 32, Russia; Biological Faculty, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - M S Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Vavilova Str. 32, Russia; Biological Faculty, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - S A Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Vavilova Str. 32, Russia; Biological Faculty, Lomonosov Moscow State University, 119234, Moscow, Russia; German Rheumatology Research Center (DRFZ), Berlin, Germany
| | - S I Grivennikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Vavilova Str. 32, Russia; Fox Chase Cancer Center, Cancer Prevention and Control Program, Philadelphia, PA, USA.
| | - D V Kuprash
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Vavilova Str. 32, Russia; Biological Faculty, Lomonosov Moscow State University, 119234, Moscow, Russia.
| |
Collapse
|
4
|
Abstract
The inflammatory bowel diseases ulcerative colitis and Crohn's disease are associated with an increased risk for the development of colorectal cancer. During recent years, several immune signaling pathways have been linked to colitis-associated cancer (CAC), largely owing to the availability of suitable preclinical models. Among these, chronic intestinal inflammation has been shown to support tumor initiation through oxidative stress-induced mutations. A proinflammatory microenvironment that develops, possibly as a result of defective intestinal barrier function and host-microbial interactions, enables tumor promotion. Several molecular pathways such as tumor necrosis factor/nuclear factor-κB or interleukin 6/signal transducer and activator of transcription 3 signaling have been identified as important contributors to CAC development and could be promising therapeutic targets for the prevention and treatment of CAC.
Collapse
Key Words
- AOM-DSS, azoxymethane–dextran sulfate sodium
- APC, adenomatous polyposis coli
- CAC, colitis-associated cancer
- CD, Crohn’s disease
- CRC, colorectal cancer
- Colorectal Cancer
- Crohn's Disease
- Cytokines
- DDR, DNA damage response
- IBD, inflammatory bowel disease
- IKK, IκB kinase
- IL, interleukin
- IL6R, interleukin 6 receptor
- Inflammatory Bowel Disease
- Interleukin-6
- LPS, lipopolysaccharide
- Myd88, myeloid differentiation primary response gene 88
- NF-κB, nuclear factor-κB
- NLR, NOD- and leucine-rich repeat–containing protein
- NLRP, nucleotide-binding oligomerization domain- and leucine-rich repeat–containing protein family, pyrin domain-containing
- NOD, nucleotide-binding oligomerization domain
- RONS, reactive oxygen and nitrogen species
- STAT3, signal transducer and activator of transcription 3
- TLR, Toll-like receptor
- TNF, tumor necrosis factor
- TNFR, tumor necrosis factor receptor
- Th17, T-helper 17
- Tumor Necrosis Factor Alpha
- UC, ulcerative colitis
- Ulcerative Colitis
- gp, glycoprotein
Collapse
|
5
|
Endomicroscopic Imaging of COX-2 Activity in Murine Sporadic and Colitis-Associated Colorectal Cancer. DIAGNOSTIC AND THERAPEUTIC ENDOSCOPY 2013; 2013:250641. [PMID: 23401648 PMCID: PMC3562574 DOI: 10.1155/2013/250641] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 12/26/2012] [Indexed: 12/21/2022]
Abstract
Although several studies propose a chemopreventive effect of aspirin for colorectal cancer (CRC) development, the general use of aspirin cannot be recommended due to its adverse side effects. As the protective effect of aspirin has been associated with an increased expression of COX-2, molecular imaging of COX-2, for instance, during confocal endomicroscopy could enable the identification of patients who would possibly benefit from aspirin treatment. In this pilot trial, we used a COX-2-specific fluorescent probe for detection of colitis-associated and sporadic CRC in mice using confocal microscopy. Following the injection of the COX-2 probe into tumor-bearing APCmin mice or mice exposed to the AOM + DSS model of colitis-associated cancer, the tumor-specific upregulation of COX-2 could be validated with in vivo fluorescence imaging. Subsequent confocal imaging of tumor tissue showed an increased number of COX-2 expressing cells when compared to the normal mucosa of healthy controls. COX-2-expression was detectable with subcellular resolution in tumor cells and infiltrating stroma cells. These findings pose a proof of concept and suggest the use of CLE for the detection of COX-2 expression during colorectal cancer surveillance endoscopy. This could improve early detection and stratification of chemoprevention in patients with CRC.
Collapse
|