1
|
Wu L, Zhang L, Huang M, Wu Y, Jin S, Zhang Y, Gan X, Yu T, Yu G, Zhang J, Wang X. Mesenchymal Stem Cell-Derived Exosomes: Emerging as a Promising Cell-Free Therapeutic Strategy for Autoimmune Hepatitis. Biomolecules 2024; 14:1353. [PMID: 39595530 PMCID: PMC11592114 DOI: 10.3390/biom14111353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Autoimmune hepatitis (AIH) is an immune-mediated liver disease that currently faces limited treatment options. In its advanced stages, AIH can progress to liver fibrosis and cirrhosis. Recent research has increasingly focused on cell-free therapies, particularly the use of mesenchymal stem cell (MSC)-derived exosomes (Exos), which have shown promise in treating autoimmune diseases, including AIH. MSC-Exos, as microvesicles with low immunogenicity, high safety, and permeability, can deliver RNA, DNA, proteins, lipids, and various drugs for disease treatment, showing promising clinical application prospects. This review provides a comprehensive summary of the current research on MSC-Exos in the treatment of autoimmune hepatitis (AIH) and explores the underlying molecular mechanisms involved. It highlights the significant regulatory effects of MSC-Exos on immune cells and their ability to modify the microenvironment, demonstrating anti-inflammatory and anti-fibrotic properties while promoting liver regeneration. Additionally, this review also discusses potential challenges and future strategies for advancing Exo-based therapies in the treatment of AIH.
Collapse
Affiliation(s)
- Liwen Wu
- Department of Immunology, Zunyi Medical University, Zunyi 563003, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Longze Zhang
- Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Minglei Huang
- Department of Immunology, Zunyi Medical University, Zunyi 563003, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Yan Wu
- Department of Immunology, Zunyi Medical University, Zunyi 563003, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Sikan Jin
- Department of Immunology, Zunyi Medical University, Zunyi 563003, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Yaqi Zhang
- Department of Immunology, Zunyi Medical University, Zunyi 563003, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Xinyun Gan
- Department of Immunology, Zunyi Medical University, Zunyi 563003, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Ting Yu
- Department of Immunology, Zunyi Medical University, Zunyi 563003, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Guang Yu
- Department of Immunology, Zunyi Medical University, Zunyi 563003, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi 563003, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Xianyao Wang
- Department of Immunology, Zunyi Medical University, Zunyi 563003, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
2
|
Liu Y, Hao H, Hou T. Concanavalin A-induced autoimmune hepatitis model in mice: Mechanisms and future outlook. Open Life Sci 2022; 17:91-101. [PMID: 35291566 PMCID: PMC8886606 DOI: 10.1515/biol-2022-0013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/29/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Abstract
The concanavalin A (Con A)-induced liver injury mouse model is a typical animal model focusing on T cell-dependent hepatic damage in the field of autoimmune hepatitis (AIH). However, the underlying mechanism of hepatic dysfunction due to cell activation or signaling pathways triggered by Con A has not been fully clarified. Therefore, the controversy on this model remains in the academic community. In this article, we first summarized the merit and demerit of this contentious model from the perspectives of cell dysfunction, microcirculation disturbance, involved signaling pathways, as well as the properties of Con A. Then, we summed up the scientific implications of the model in elucidating the pathogenesis of AIH, and the shortcomings of this model were also summarized to elucidate the pathogenesis and application prospect of this classical liver injury mouse model in the study of AIH.
Collapse
Affiliation(s)
- Yang Liu
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine , Jinzhong , 030619 , PR China
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine , Jinzhong , 030619 , PR China
| | - Huiqin Hao
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine , Jinzhong , 030619 , PR China
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine , Jinzhong , 030619 , PR China
| | - Tiezheng Hou
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine , Jinzhong , 030619 , PR China
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine , Jinzhong , 030619 , PR China
| |
Collapse
|
3
|
Christen U, Hintermann E. Immunopathogenic Mechanisms of Autoimmune Hepatitis: How Much Do We Know from Animal Models? Int J Mol Sci 2016; 17:ijms17122007. [PMID: 27916939 PMCID: PMC5187807 DOI: 10.3390/ijms17122007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 12/14/2022] Open
Abstract
Autoimmune hepatitis (AIH) is characterized by a progressive destruction of the liver parenchyma and a chronic fibrosis. The current treatment of autoimmune hepatitis is still largely dependent on the administration of corticosteroids and cytostatic drugs. For a long time the development of novel therapeutic strategies has been hampered by a lack of understanding the basic immunopathogenic mechanisms of AIH and the absence of valid animal models. However, in the past decade, knowledge from clinical observations in AIH patients and the development of innovative animal models have led to a situation where critical factors driving the disease have been identified and alternative treatments are being evaluated. Here we will review the insight on the immunopathogenesis of AIH as gained from clinical observation and from animal models.
Collapse
Affiliation(s)
- Urs Christen
- Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Theodor-Stern Kai 7, 60590 Frankfurt am Main, Germany.
| | - Edith Hintermann
- Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Theodor-Stern Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
4
|
Non-alcoholic fatty liver disease (NAFLD) potentiates autoimmune hepatitis in the CYP2D6 mouse model. J Autoimmun 2016; 69:51-8. [DOI: 10.1016/j.jaut.2016.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/12/2016] [Accepted: 02/17/2016] [Indexed: 02/07/2023]
|
5
|
Liu X, Jiang X, Liu R, Wang L, Qian T, Zheng Y, Deng Y, Huang E, Xu F, Wang JY, Chu Y. B cells expressing CD11b effectively inhibit CD4+ T-cell responses and ameliorate experimental autoimmune hepatitis in mice. Hepatology 2015. [PMID: 26207521 DOI: 10.1002/hep.28001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED Increasing evidence in recent years has suggested that B cells act as a crucial regulator in autoimmune diseases. However, little is known about their role in autoimmune hepatitis (AIH) and the underlying regulatory mechanisms. In this study, we show that B cells ameliorated experimental AIH (EAH) by suppressing CD4+ T-cell responses and that CD11b expression on B cells was required for the regulatory function of B cells. In vitro studies reveal that the suppressive function of CD11b was mediated by the impairment of T-cell antigen receptor (TCR) signaling transduction and the promotion of TCR down-regulation. Moreover, we show that the increased CD11b expression on B cells was interleukin (IL)-10 dependent and that additional IL-10 stimulation promoted CD11b expression on B cells, thereby enhancing B-cell regulatory effects. CONCLUSION These findings reveal a previously unrecognized role for CD11b in B-cell regulatory function and its protective effect on EAH.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| | - Xuechao Jiang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| | - Ronghua Liu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| | - Luman Wang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| | - Tingting Qian
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| | - Yijie Zheng
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| | - Yuting Deng
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| | - Enyu Huang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| | - Fengkai Xu
- Department of Thoracic Surgery, The Affiliated Zhongshan Hospital of Fudan University, Shanghai, China
| | - Ji-Yang Wang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Abstract
Autoimmune disorders afflicting the liver comprise the bona fide autoimmune diseases, primary biliary cirrhosis, primary sclerosing cholangitis, and autoimmune hepatitis as well as drug-induced autoimmune-like diseases, such as halothane hepatitis. Whereas drug-induced forms of acute or chronic hepatitis often have a clear triggering factor, the etiology of classical autoimmune liver diseases is only poorly understood. Besides a genetic component present in disease susceptible individuals, environmental triggering factors are likely to play a role in the initiation and/or propagation of the disease. In this article, we will review on current evidence obtained from epidemiological associations, case studies, and findings in animal models for pathogens, to be involved in the etiology of autoimmune liver disease with a special focus on autoimmune hepatitis.
Collapse
Affiliation(s)
- Urs Christen
- Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital , Frankfurt am Main , Germany
| | | |
Collapse
|
7
|
Wang JY, Lee CY, Pan PJ, Chang WC, Chiu JH, Chen WS, Shyr YM. Herb-induced autoimmune-like hepatitis in C57BL/6J mice. Liver Int 2014; 34:583-93. [PMID: 23890230 DOI: 10.1111/liv.12266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 06/20/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Animal model suitable for studying herb-induced experimental autoimmune hepatitis (AIH) remains a challenging problem. A medicinal herb containing Scutellaria baicalensis Georgi (Sb) and Bupleurum chinense DC (Bc) has been sporadically reported to be related to liver fibrosis. The aim of this study was to investigate the effects of Sb and Bc on experimental AIH in mice. METHODS C57BL/6J mice received intraperitoneal injection of Sb and/or Bc herbal extracts (1 mg/kg) for 4 or 8 weeks. Serum samples were collected to analyse serum transferase (AST, ALT), creatinine, markers for AIH and hepatic cytokine levels such as IFN-γ, IL10 and TGF-β1. Peripheral mononuclear cell (PBMC) gene expression profiles were analysed to show their effects on immune system. RESULTS Our results showed that Sb or Bc treatment increased serum AST, ALT, IgG and ANA levels. Prominent necroinflammatory changes were demonstrated in the livers of Sb- or Bc-treated mice while the decrease in IFN-γ and elevation of IL10 and TGF-β1 levels in liver tissues. Furthermore, the PMBC gene expression profile suggested that Sb or Bc treatment could modulate immune responses. CONCLUSION We conclude that the presence of AIH in Sb- or Bc-treated mice and C57BL/6J strain mice is a reliable animal model for studying herb-induced AIH-like hepatitis.
Collapse
Affiliation(s)
- Jir-You Wang
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Orthopaedics, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|