1
|
Zhu QY, Zhao GX, Li Y, Talakatta G, Mai HQ, Le QT, Young LS, Zeng MS. Advances in pathogenesis and precision medicine for nasopharyngeal carcinoma. MedComm (Beijing) 2021; 2:175-206. [PMID: 34766141 PMCID: PMC8491203 DOI: 10.1002/mco2.32] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a squamous carcinoma with apparent geographical and racial distribution, mostly prevalent in East and Southeast Asia, particularly concentrated in southern China. The epidemiological trend over the past decades has suggested a substantial reduction in the incidence rate and mortality rate due to NPC. These results may reflect changes in lifestyle and environment, and more importantly, a deeper comprehension of the pathogenic mechanism of NPC, leading to much progress in the preventing, screening, and treating for this cancer. Herein, we present the recent advances on the key signal pathways involved in pathogenesis of NPC, the mechanism of Epstein‐Barr virus (EBV) entry into the cell, and the progress of EBV vaccine and screening biomarkers. We will also discuss in depth the development of various therapeutic approaches including radiotherapy, chemotherapy, surgery, targeted therapy, and immunotherapy. These research advancements have led to a new era of precision medicine in NPC.
Collapse
Affiliation(s)
- Qian-Ying Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Ge-Xin Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Yan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Girish Talakatta
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Hai-Qiang Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Quynh-Thu Le
- Department of Radiation Oncology Stanford California
| | - Lawrence S Young
- Warwick Medical School University of Warwick Coventry United Kingdom
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| |
Collapse
|
2
|
Liu Y, Jiang Q, Liu X, Lin X, Tang Z, Liu C, Zhou J, Zhao M, Li X, Cheng Z, Li L, Xie Y, Liu Z, Fang W. Cinobufotalin powerfully reversed EBV-miR-BART22-induced cisplatin resistance via stimulating MAP2K4 to antagonize non-muscle myosin heavy chain IIA/glycogen synthase 3β/β-catenin signaling pathway. EBioMedicine 2019; 48:386-404. [PMID: 31594754 PMCID: PMC6838365 DOI: 10.1016/j.ebiom.2019.08.040] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-related tumor. The role of EBV-encoding miR-BART22 is still unclear in NPC. This study aimed to identify the detailed mechanisms by which EBV-miR-BART22 functions as a tumor-promoting factor and evaluate the action of cinobufotalin in treating EBV-miR-BART22-overexpressing NPC cells. METHODS Using real-time PCR, western blotting, immunohistochemistry, and In situ hybridization, we detected the expression of miR-BART22 and MAP2K4 in tissues and cells, as well as evaluated their clinical relevance in NPC patients. The effects of miR-BART22 on cell metastasis, stemness and DDP chemoresistance were examined by sphere formation assay, side population analysis, transwell, boyden, in vivo xenograft tumor mouse model et al. Western blotting, immunofluorescence staining, luciferase reporter assay, ChIP, EMSA and Co-IP assay et al. were performed to explore the detailed molecular mechanism of EBV-miR-BART22 in NPC. Finally, we estimated the effects and molecular basis of Cinobufotalin on EBV-miR-BART22-overexpressing NPC cells in vitro and in vivo assays. FINDINGS We observed that EBV-miR-BART22 not only promoted tumor stemness and metastasis, but also enhanced the resistance to Cisplatin (DDP) in vitro and in vivo. Mechanistic analysis indicated that EBV-miR-BART22 directly targeted the MAP2K4 and upregulated non-muscle myosin heavy chain IIA (MYH9) expression by PI3K/AKT/c-Jun-induced transcription. Further, MYH9 interacted with glycogen synthase 3β(GSK3β) protein and induced its ubiquitin degradation by activating PI3K/AKT/c-Jun-induced ubiquitin transcription and the latter combined with increased TRAF6 E3 ligase, which further bound to GSK3β protein. Reductions in the GSK3β protein thus promoted β-catenin expression and nuclear translocation, which induced tumor stemness and the epithelial-to-mesenchymal transition (EMT) signals. Furthermore, we observed that cinobufotalin, a new chemically synthesized compound, significantly suppressed EBV-miR-BART22-induced DDP chemoresistance by upregulating MAP2K4 to suppress MYH9/GSK3β/β-catenin and its downstream tumor stemness and EMT signals in NPC. Finally, clinical data revealed that increased miR-BART22 and reduced MAP2K4 expression caused the poor prognoses of NPC patients. INTERPRETATION Our study provides a novel mechanism that cinobufotalin reversed the DDP chemoresistance and EMT induced by EBV-miR-BART22 in NPC.
Collapse
Affiliation(s)
- Yiyi Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qingping Jiang
- Cancer Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, China; Department of Pathology, Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiong Liu
- Cancer Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, China; Department of Otolaryngology, Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xian Lin
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - ZiBo Tang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jin Zhou
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Mengyang Zhao
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xin Li
- Shenzhen Key Laboratory of Viral Oncology, the Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zhao Cheng
- Shenzhen Key Laboratory of Viral Oncology, the Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China; Department of Pediatric Otorhinolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Libo Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yingying Xie
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Deng Z, Li Z, Sun C, Xie H, Chen Z, Liu J, Wang H, Zhang C, Wang G. The association between inflammation, the microbiome and urethane-induced pulmonary adenocarcinoma. Oncol Lett 2018; 15:6352-6360. [PMID: 29725395 PMCID: PMC5920366 DOI: 10.3892/ol.2018.8167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 12/20/2016] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is amongst the most common types of cancer throughout the world. The overall 5-year survival rate is ~17%. A number of studies have demonstrated that the microbiome existing within the host may affect the level of inflammation, and consequently contribute to the carcinogenesis of certain types of cancer. To investigate the role of inflammation and the microbiome in the carcinogenesis of lung cancer, an intervention study involving mice, including a control group (C; n=5), a urethane-induced pulmonary adenocarcinoma group (U; n=5) and a prebiotics intervention group (P; n=5) was carried out. This pulmonary adenocarcinoma model was reviewed, and incidences of the disease were identified using histopathology. The levels of the inflammatory cytokines nuclear factor κB (NF-κB), tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β) and IL-6 in the sera samples were measured using an ELISA technique. In addition, high-throughput sequencing of the 16S ribosomal RNA gene segment was used to analyze the species present in the microbiome of the lower airways and intestinal tracts of mice. The results demonstrated that groups P and U exhibited altered histopathology and the development of lung adenocarcinoma tumors, but no differences were observed between the groups. The level of inflammation, determined by measuring the levels of NF-κB, TNF-α, IL-1β and IL-6 inflammatory cytokines, was significantly lower in group P compared with group U (P<0.05), and was significantly higher in group P compared with group C (P<0.05). Overall, the microbiomes of the lower respiratory and intestinal tracts did not change markedly among the 3 groups, in terms of the size of colonies and Shannon diversity indices. However, at a family and operational taxonomic unit (OTU) level, certain microbiota were altered. For example, the abundance of the Clostridiales and Lachnospiraceae families was lower in the lung and intestinal tracts subsequent to urethane-induced treatment compared with in the control group (P<0.05), and the level of abundance of the Clostridiales family increased to similar levels within the control group (P<0.05), when prebiotics were administered. The levels of abundance of the S24-7, Bacteroidales and Firmicutes families were higher in the intestinal tract compared with the control group (P<0.05), and following treatment with prebiotics, the levels of abundance of these families decreased to similar levels observed in the control group (P<0.05). In conclusion, inflammation and the microbiome serve important roles in the carcinogenesis of lung cancer. Additionally, prebiotics may increase the efficacy of lung cancer treatment by modulating levels of inflammation and the composition of the microbiome. The associations between inflammation, the microbiome and lung cancer require attention.
Collapse
Affiliation(s)
- Zenghua Deng
- Baodi Clinical Institute, Tianjin Medical University, Tianjin 301800, P.R. China
| | - Zhihui Li
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Cognitive and Mental Health Research Center of The PLA, Beijing 100850, P.R. China
| | - Changqing Sun
- Baodi Clinical Institute, Tianjin Medical University, Tianjin 301800, P.R. China
| | - Hui Xie
- Baodi Clinical Institute, Tianjin Medical University, Tianjin 301800, P.R. China
| | - Zhengang Chen
- Baodi Clinical Institute, Tianjin Medical University, Tianjin 301800, P.R. China
| | - Jinbo Liu
- Baodi Clinical Institute, Tianjin Medical University, Tianjin 301800, P.R. China
| | - Hui Wang
- Baodi Clinical Institute, Tianjin Medical University, Tianjin 301800, P.R. China
| | - Chenggang Zhang
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Cognitive and Mental Health Research Center of The PLA, Beijing 100850, P.R. China
| | - Guangshun Wang
- Baodi Clinical Institute, Tianjin Medical University, Tianjin 301800, P.R. China
| |
Collapse
|
4
|
Li J, Zhou C, Wang G, Wang S, Ni S, Ye M, Zhang J. Promoter hypermethylation of SLIT2 is a risk factor and potential diagnostic biomarker for nasopharyngeal carcinoma. Gene 2017; 644:74-79. [PMID: 29107007 DOI: 10.1016/j.gene.2017.10.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 10/04/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023]
Abstract
SLIT2 is a candidate tumor suppressor gene and recent studies have shown that SLIT2 expression is suppressed or reduced by hypermethylation in the promoter region in various cancers. The aim of this study was to investigate the association between SLIT2 promoter methylation and nasopharyngeal carcinoma (NPC) and its relative diagnostic ability for NPC. Bisulfite pyrosequencing technology was performed to measure methylation levels of the SLIT2 promoter in tissue and plasma samples from 61 NPC patients and 38 normal volunteers. The receiver operating characteristic (ROC) curve and area under the curve (AUC) were used to evaluate the diagnostic ability of SLIT2 methylation for diagnosing NPC. Our results showed that methylation levels of the SLIT2 promoter were significantly higher in NPC patients compared with individuals, both in tissue samples (P=2.57E-10) and plasma samples (plasma: P=3.86E-13). In addition, the frequency of SLIT2 promoter methylation markedly increased in the advanced stage (tissue: P=3.50E-05; plasma: P=1.14E-04) and advanced T classified (tissue: P=9.00E-06; plasma: P=3.80E-05), as well as in lymph node metastasis patients (tissue: P=1.82E-03; plasma: P=2.22E-03). In addition, the AUCs according to tissue and plasma samples were 0.846 and 0.866, respectively. When these two sample-types were combined, the AUC increased slightly to 0.874. Our study revealed that elevated SLIT2 promoter methylation contributed to the risk of NPC, as well as being involved in its progression and metastasis. Therefore, the methylated SLIT2 promoter could serve as a potential biomarker for diagnosing NPC.
Collapse
Affiliation(s)
- Jinyun Li
- Department of Oncology and Hematology, Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang, China
| | - Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo 315040, Zhejiang, China.
| | - Guoli Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo 315040, Zhejiang, China
| | - Shaomin Wang
- Department of Oncology and Hematology, Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang, China
| | - Shuming Ni
- Department of Oncology and Hematology, Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang, China
| | - Meng Ye
- Department of Oncology and Hematology, Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang, China.
| | - Jian Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo 315040, Zhejiang, China.
| |
Collapse
|
5
|
Marcello MA, Malandrino P, Almeida JFM, Martins MB, Cunha LL, Bufalo NE, Pellegriti G, Ward LS. The influence of the environment on the development of thyroid tumors: a new appraisal. Endocr Relat Cancer 2014; 21:T235-54. [PMID: 24948559 DOI: 10.1530/erc-14-0131] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most epidemiological studies concerning differentiated thyroid cancers (DTC) indicate an increasing incidence over the last two decades. This increase might be partially explained by the better access to health services worldwide, but clinicopathological analyses do not fully support this hypothesis, indicating that there are carcinogenetic factors behind this noticeable increasing incidence. Although we have undoubtedly understood the biology and molecular pathways underlying thyroid carcinogenesis in a better way, we have made very little progresses in identifying a risk profile for DTC, and our knowledge of risk factors is very similar to what we knew 30-40 years ago. In addition to ionizing radiation exposure, the most documented and established risk factor for DTC, we also investigated the role of other factors, including eating habits, tobacco smoking, living in a volcanic area, xenobiotics, and viruses, which could be involved in thyroid carcinogenesis, thus, contributing to the increase in DTC incidence rates observed.
Collapse
Affiliation(s)
- M A Marcello
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - P Malandrino
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - J F M Almeida
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - M B Martins
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - L L Cunha
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - N E Bufalo
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - G Pellegriti
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - L S Ward
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| |
Collapse
|