1
|
Flandes J, Martinez-Muñiz FB, Cruz-Rueda JJ, Soto FJ, Majid A, Tuta-Quintero E, Giraldo-Cadavid LF. The effect of combining different sampling tools on the performance of electromagnetic navigational bronchoscopy for the evaluation of peripheral lung lesions and factors associated with its diagnostic yield. BMC Pulm Med 2023; 23:432. [PMID: 37940942 PMCID: PMC10634141 DOI: 10.1186/s12890-023-02711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/14/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND We assessed the performance of Electromagnetic navigational bronchoscopy (ENB) as a standalone diagnostic technique and the performance of different sampling tools used during the procedure. METHODS We recruited 160 consecutive patients who underwent ENB for peripheral lung lesions (PLL) at a tertiary care centre. The diagnostic performance of ENB and sampling tools was assessed using a logistic regression model and a ROC-curve in which the dependent variable was diagnostic success. A multivariate model was built to predict diagnostic success before performing ENB to select the best candidates for the procedure. RESULTS Most patients with PLLs in the study were male (65%), with a mean age of 67.9 years. The yield was 66% when the most common techniques were used together as suction catheter + transbronchial biopsy forceps (TBBx) + bronchoalveolar lavage + bronchial washing (p < 0.001) and increased to 69% when transbronchial needle aspiration (TBNA) and cytology brush were added (p < 0.001). Adding diagnostic techniques such as TBBx and TBNA resulted in an increase in diagnostic performance, with a statistically significant trend (p = 0.002). The logistic model area-under the ROC-curve for diagnostic success during ENB was 0.83 (95% CI:0.75-0.90; p < 0.001), and a logit value ≥ 0.12 was associated with ≥ 50% probability of diagnostic success. CONCLUSIONS ENB, as a stand-alone diagnostic tool for the evaluation of PLLs when performed by experienced operators using a multi-modality technique, has a good diagnostic yield. The probability of having a diagnostic ENB could be assessed using the proposed model.
Collapse
Affiliation(s)
- Javier Flandes
- Chief of Bronchology and Interventional Pulmonology Unit, IIS-Fundación Jiménez Díaz, CIBERES, Avenida Reyes Catolicos No 2, 28040, Madrid, Spain
| | | | | | - Francisco J Soto
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | - Adnan Majid
- Division of Thoracic Surgery and Interventional Pulmonology, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Luis F Giraldo-Cadavid
- Professor of Medicine at Facultad de Medicina, Autonorte de Bogota. Chía, Universidad de La Sabana. Address: Universidad de La Sabana, Km 7, 250001, Cundinamarca, Colombia.
- Chief of the Interventional Pulmonology Service at Fundacion Neumologica Colombiana, Cra. 13B#161 - 85, 110131, Bogotá, Colombia.
| |
Collapse
|
2
|
Ashrafi A, Atay SM, Wightman SC, Harano T, Kim AW. Estimating revenue, costs, and operating margin of any hospital-based thoracic surgery practice using a novel financial model. J Thorac Cardiovasc Surg 2023; 166:690-698.e1. [PMID: 36934070 DOI: 10.1016/j.jtcvs.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/23/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023]
Abstract
OBJECTIVE The study objective was to develop a generalizable financial model that estimates payor-specific reimbursements associated with anatomic lung resections for any hospital-based thoracic surgery practice. METHODS Medical records of patients who presented to the thoracic surgery clinic and eventually underwent an anatomic lung resection from January 2019 to December 2020 were reviewed. The volume of preoperative and postoperative studies, clinic visits, and outpatient referrals was measured. Neither subsequent studies nor procedures from outpatient referrals were captured. Diagnosis-related group, cost-to-charge ratios, Current Procedural Terminology Medicare payment data, and Private:Medicare and Medicaid:Medicare payment ratios were used to estimate payor-specific reimbursements and operating margin. RESULTS A total of 111 patients met inclusion criteria and underwent 113 operations: 102 (90%) lobectomies, 7 (6%) segmentectomies, and 4 (4%) pneumonectomies. These patients underwent 554 total studies, received 60 referrals to other specialties, and had 626 total clinic visits. The total charges and Medicare reimbursement were $12.5 M and $2.7 M, respectively. After adjusting for a 41% Medicare, 2% Medicaid, and 57% Private payor mix, the total reimbursement was $4.7 M. With a 0.252 cost-to-charge ratio, total costs and operating income were $3.2 M and $1.5 M, respectively (ie, 33% operating margin). Average reimbursement per surgery by payor was $51k for Private, $29k for Medicare, and $23k for Medicaid. CONCLUSIONS For any hospital-based thoracic surgery practice, this novel financial model can calculate both overall and payor-specific reimbursements, costs, and operating margin across the full perioperative spectrum. By manipulating hospital name, hospital state, volume, and payor mix, any program can gain insights into their financial contributions and use the outputs to guide investment decisions.
Collapse
Affiliation(s)
- Arman Ashrafi
- Keck School of Medicine of the University of Southern California, Los Angeles, Calif
| | - Scott M Atay
- Division of Thoracic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Sean C Wightman
- Division of Thoracic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Takashi Harano
- Division of Thoracic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Anthony W Kim
- Division of Thoracic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, Calif.
| |
Collapse
|
3
|
Kops SEP, Heus P, Korevaar DA, Damen JAA, Idema DL, Verhoeven RLJ, Annema JT, Hooft L, van der Heijden EHFM. Diagnostic yield and safety of navigation bronchoscopy: A systematic review and meta-analysis. Lung Cancer 2023; 180:107196. [PMID: 37130440 DOI: 10.1016/j.lungcan.2023.107196] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/11/2023] [Accepted: 04/16/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Navigation bronchoscopy has seen rapid development in the past decade in terms of new navigation techniques and multi-modality approaches utilizing different techniques and tools. This systematic review analyses the diagnostic yield and safety of navigation bronchoscopy for the diagnosis of peripheral pulmonary nodules suspected of lung cancer. METHODS An extensive search was performed in Embase, Medline and Cochrane CENTRAL in May 2022. Eligible studies used cone-beam CT-guided navigation (CBCT), electromagnetic navigation (EMN), robotic navigation (RB) or virtual bronchoscopy (VB) as the primary navigation technique. Primary outcomes were diagnostic yield and adverse events. Quality of studies was assessed using QUADAS-2. Random effects meta-analysis was performed, with subgroup analyses for different navigation techniques, newer versus older techniques, nodule size, publication year, and strictness of diagnostic yield definition. Explorative analyses of subgroups reported by studies was performed for nodule size and bronchus sign. RESULTS A total of 95 studies (n = 10,381 patients; n = 10,682 nodules) were included. The majority (n = 63; 66.3%) had high risk of bias or applicability concerns in at least one QUADAS-2 domain. Summary diagnostic yield was 70.9% (95%-CI 68.4%-73.2%). Overall pneumothorax rate was 2.5%. Newer navigation techniques using advanced imaging and/or robotics(CBCT, RB, tomosynthesis guided EMN; n = 24 studies) had a statistically significant higher diagnostic yield compared to longer established techniques (EMN, VB; n = 82 studies): 77.5% (95%-CI 74.7%-80.1%) vs 68.8% (95%-CI 65.9%-71.6%) (p < 0.001).Explorative subgroup analyses showed that larger nodule size and bronchus sign presence were associated with a statistically significant higher diagnostic yield. Other subgroup analyses showed no significant differences. CONCLUSION Navigation bronchoscopy is a safe procedure, with the potential for high diagnostic yield, in particular using newer techniques such as RB, CBCT and tomosynthesis-guided EMN. Studies showed a large amount of heterogeneity, making comparisons difficult. Standardized definitions for outcomes with relevant clinical context will improve future comparability.
Collapse
Affiliation(s)
- Stephan E P Kops
- Department of Pulmonary Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Pauline Heus
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Daniël A Korevaar
- Department of Respiratory Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Johanna A A Damen
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Demy L Idema
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Roel L J Verhoeven
- Department of Pulmonary Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jouke T Annema
- Department of Respiratory Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Lotty Hooft
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
4
|
SUN X, SU Y, LI S, TIAN Y, ZHAO L. [Diagnostic Value and Safety of Electromagnetic Navigation Bronchoscopy
in Peripheral Pulmonary Lesions: A Meta-analysis]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2023; 26:119-134. [PMID: 36872051 PMCID: PMC10033244 DOI: 10.3779/j.issn.1009-3419.2023.102.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND The incidence and mortality of lung cancer have always been at the forefront of malignant tumors. With the development of lung cancer detection techniques, more peripheral pulmonary lesions (PPLs) have been detected. The diagnostic accuracy of procedures for PPLs keeps controversial. This study aims to systematically evaluate the diagnostic value and the safety of electromagnetic navigation bronchoscopy (ENB) in the diagnosis of PPLs. METHODS The relevant literatures in the diagnostic yield of PPLs by ENB were systematically retrieved from Wanfang Data Knowledge Service Platform, China National Knowledge Infrastructure, Embase, PubMed, Cochrane Library and Web of Science. The software of Stata 16.0, RevMan 5.4 and Meta-disc 1.4 were used to conduct the meta-analysis. RESULTS A total of 54 literatures with 55 studies were included in our meta-analysis. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio and diagnostic odds ratio of ENB in the diagnosis of PPLs were 0.77 (95%CI: 0.73-0.81), 0.97 (95%CI: 0.93-0.99), 24.27 (95%CI: 10.21-57.67), 0.23 (95%CI: 0.19-0.28) and 104.19 (95%CI: 41.85-259.37), respectively. The area under curve (AUC) was 0.90 (95%CI: 0.87-0.92). Meta-regression and subgroup analyses indicated that the potential heterogeneity resulted from study type, additional localization techniques, sample size, lesion size and type of sedation. The use of additional localization techniques and general anesthesia have improved the diagnostic efficiency of ENB in PPLs. The incidence of adverse reactions and complications associated with ENB was very low. CONCLUSIONS ENB provides well diagnostic accuracy and safety.
Collapse
|
5
|
Cherian SV, Kaur S, Karanth S, Xian JZ, Estrada-Y-Martin RM. Diagnostic yield of electromagnetic navigational bronchoscopy: A safety net community-based hospital experience in the United States. Ann Thorac Med 2021; 16:102-109. [PMID: 33680130 PMCID: PMC7908899 DOI: 10.4103/atm.atm_388_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/25/2020] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Electromagnetic navigational bronchoscopy (ENB) is an excellent tool to diagnose peripheral pulmonary nodules, especially in the setting of emphysema and pulmonary fibrosis. However, most of these procedures are done by interventional pulmonologists and academic tertiary centers under general anesthesia. Studies evaluating the diagnostic utility of this tool in safety-net community hospitals by pulmonologists not formally trained in this technology are lacking. The objective was to evaluate the diagnostic yield of ENB done in such a setting and its associated complications. METHODS Retrospective chart review of consecutive ENB procedures over 5 years from 2014, since its inception in our institution-a safety-net community based hospital was performed. Multiple variables were analyzed to assess their impact on diagnostic yields. RESULTS After exclusion criteria were applied, 72 patients with 76 procedures were eventually included within our study, with an overall 1-year diagnostic yield of 80.2%. Sensitivity for malignancy was 73% and negative predictive value of 65%. Primary lung cancer was the most common diagnosis obtained, followed by tuberculosis (TB). The overall complication rates were low, with only 1 patient (1.3%) requiring hospitalization due to pneumothorax needing tube thoracostomy. No deaths or respiratory failures were noted within the cohort. The only significant variable affecting diagnostic yield was forced expiratory volume in 1 s. The presence of emphysema did not affect diagnostic yield. CONCLUSIONS ENB is safe and feasible with a high diagnostic success rate even when performed by pulmonologists not formally trained in interventional pulmonology in low resource settings under moderate sedation.
Collapse
Affiliation(s)
- Sujith V. Cherian
- Divisions of Critical Care, Pulmonary and Sleep Medicine, McGovern Medical School, University of Texas Health, Houston, TX, USA
| | - Saranjit Kaur
- Divisions of Critical Care, Pulmonary and Sleep Medicine, McGovern Medical School, University of Texas Health, Houston, TX, USA
| | - Siddharth Karanth
- Divisions of Critical Care, Pulmonary and Sleep Medicine, McGovern Medical School, University of Texas Health, Houston, TX, USA
| | - Jonathan Z Xian
- Divisions of Critical Care, Pulmonary and Sleep Medicine, McGovern Medical School, University of Texas Health, Houston, TX, USA
| | - Rosa M Estrada-Y-Martin
- Divisions of Critical Care, Pulmonary and Sleep Medicine, McGovern Medical School, University of Texas Health, Houston, TX, USA
| |
Collapse
|
6
|
Folch EE, Labarca G, Ospina-Delgado D, Kheir F, Majid A, Khandhar SJ, Mehta HJ, Jantz MA, Fernandez-Bussy S. Sensitivity and Safety of Electromagnetic Navigation Bronchoscopy for Lung Cancer Diagnosis: Systematic Review and Meta-analysis. Chest 2020; 158:1753-1769. [PMID: 32450240 DOI: 10.1016/j.chest.2020.05.534] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 05/01/2020] [Accepted: 05/08/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Bronchoscopy is a useful tool for the diagnosis of lesions near central airways; however, the diagnostic accuracy of these procedures for peripheral pulmonary lesions (PPLs) is a matter of ongoing debate. In this setting, electromagnetic navigation bronchoscopy (ENB) is a technique used to navigate and obtain samples from these lesions. This systematic review and meta-analysis aims to explore the sensitivity of ENB in patients with PPLs suspected of lung cancer. RESEARCH QUESTION In patients with peripheral pulmonary lesion suspected of lung cancer, what is the sensitivity and safety of electromagnetic navigation bronchoscopy compared to surgery or longitudinal follow up? STUDY DESIGN AND METHODS A comprehensive search of several databases was performed. Extracted data included sensitivity of ENB for malignancy, adequacy of the tissue sample, and complications. The study quality was assessed using the QUADAS-2 tool, and the combined data were meta-analyzed using a bivariate method model. A summary receiver operatic characteristic curve (sROC) was created. Finally, the quality of evidence was rated using the Grading of Recommendations Assessment, Development and Evaluation approach. RESULTS Forty studies with a total of 3,342 participants were included in our analysis. ENB reported a pooled sensitivity of 77% (95% CI, 72%-82%; I2 = 80.6%) and a specificity of 100% (95% CI, 99%-100%; I2 = 0%) for malignancy. The sROC showed an area under the curve of 0.955 (P = .03). ENB achieved a sufficient sample for ancillary tests in 90.9% (95% CI, 84.8%-96.9%; I2 = 80.7%). Risk of pneumothorax was 2.0% (95% CI, 1.0-3.0; I2 = 45.2%). We found subgroup differences according to the risk of bias and the number of sampling techniques. Meta-regression showed an association between sensitivity and the mean distance of the sensor tip to the center of the nodule, the number of tissue sampling techniques, and the cancer prevalence in the study. INTERPRETATION ENB is very safe with good sensitivity for diagnosing malignancy in patients with PPLs. The applicability of our findings is limited because most studies were done with the superDimension navigation system and heterogeneity was high. TRIAL REGISTRY PROSPERO; No.: CRD42019109449; URL: https://www.crd.york.ac.uk/prospero/.
Collapse
Affiliation(s)
- Erik E Folch
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA.
| | - Gonzalo Labarca
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
| | - Daniel Ospina-Delgado
- Division of Thoracic Surgery and Interventional Pulmonology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Fayez Kheir
- Division of Thoracic Surgery and Interventional Pulmonology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Adnan Majid
- Division of Thoracic Surgery and Interventional Pulmonology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | | | - Hiren J Mehta
- Division of Pulmonary and Critical Care, University of Florida, Gainesville, FL
| | - Michael A Jantz
- Division of Pulmonary and Critical Care, University of Florida, Gainesville, FL
| | | |
Collapse
|
7
|
LeMense GP, Waller EA, Campbell C, Bowen T. Development and outcomes of a comprehensive multidisciplinary incidental lung nodule and lung cancer screening program. BMC Pulm Med 2020; 20:115. [PMID: 32349709 PMCID: PMC7191779 DOI: 10.1186/s12890-020-1129-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/01/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Appropriate management of lung nodules detected incidentally or through lung cancer screening can increase the rate of early-stage diagnoses and potentially improve treatment outcomes. However, the implementation and management of comprehensive lung nodule programs is challenging. METHODS This single-center, retrospective report describes the development and outcomes of a comprehensive lung nodule program at a community practice in Tennessee. Computed tomography (CT) scans potentially revealing incidental lung nodules were identified by a computerized search. Incidental or screening-identified lung nodules that were enlarging or not seen in prior scans were entered into a nodule database and guideline-based review determined whether to conduct a diagnostic intervention or radiologic follow-up. Referral rates, diagnosis methods, stage distribution, treatment modalities, and days to treatment are reported. RESULTS The number of patients with lung nodules referred to the program increased over 2 years, from 665 patients in Year 1 to 745 patients in Year 2. Most nodules were incidental (62-65%). Nodules identified with symptoms (15.2% in Year 1) or through screening (12.6% in Year 1) were less common. In Year 1, 27% (182/665) of nodules required a diagnostic intervention and 18% (121/665) were malignant. Most diagnostic interventions were image-guided bronchoscopy (88%) or percutaneous biopsy (9%). The proportion of Stage I-II cancer diagnoses increased from 23% prior to program implementation to 36% in Year 1 and 38% in Year 2. In screening cases, 71% of patients completed follow-up scans within 18 months. Only 2% of Year 1 patients under watchful waiting required a diagnostic intervention, of which 1% received a cancer diagnosis. CONCLUSIONS The current study reports outcomes over the first 2 years of a lung cancer screening and incidental nodule program. The results show that the program was successful, given the appropriate level of data management and oversight. Comprehensive lung nodule programs have the potential to benefit the patient, physician, and hospital system.
Collapse
Affiliation(s)
- Gregory P LeMense
- Bozeman Health Pulmonary Medicine, 937 Highland Blvd, Suite 5510, Bozeman, MT, 59715, USA.
| | - Ernest A Waller
- Blount Memorial Physicians Group, 266 Joule Street, Alcoa, TN, 37701, USA
| | - Cheryl Campbell
- Blount Memorial Physicians Group, 266 Joule Street, Alcoa, TN, 37701, USA
| | - Tyler Bowen
- Blount Memorial Physicians Group, 266 Joule Street, Alcoa, TN, 37701, USA
| |
Collapse
|
8
|
Mehta AC, Hood KL, Schwarz Y, Solomon SB. The Evolutional History of Electromagnetic Navigation Bronchoscopy. Chest 2018; 154:935-947. [DOI: 10.1016/j.chest.2018.04.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/09/2018] [Accepted: 04/18/2018] [Indexed: 01/05/2023] Open
|
9
|
Khandhar SJ, Bowling MR, Flandes J, Gildea TR, Hood KL, Krimsky WS, Minnich DJ, Murgu SD, Pritchett M, Toloza EM, Wahidi MM, Wolvers JJ, Folch EE. Electromagnetic navigation bronchoscopy to access lung lesions in 1,000 subjects: first results of the prospective, multicenter NAVIGATE study. BMC Pulm Med 2017; 17:59. [PMID: 28399830 PMCID: PMC5387322 DOI: 10.1186/s12890-017-0403-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/28/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Electromagnetic navigation bronchoscopy (ENB) is an image-guided, minimally invasive approach that uses a flexible catheter to access pulmonary lesions. METHODS NAVIGATE is a prospective, multicenter study of the superDimension™ navigation system. A prespecified 1-month interim analysis of the first 1,000 primary cohort subjects enrolled at 29 sites in the United States and Europe is described. Enrollment and 24-month follow-up are ongoing. RESULTS ENB index procedures were conducted for lung lesion biopsy (n = 964), fiducial marker placement (n = 210), pleural dye marking (n = 17), and/or lymph node biopsy (n = 334; primarily endobronchial ultrasound-guided). Lesions were in the peripheral/middle lung thirds in 92.7%, 49.7% were <20 mm, and 48.4% had a bronchus sign. Radial EBUS was used in 54.3% (543/1,000 subjects) and general anesthesia in 79.7% (797/1,000). Among the 964 subjects (1,129 lesions) undergoing lung lesion biopsy, navigation was completed and tissue was obtained in 94.4% (910/964). Based on final pathology results, ENB-aided samples were read as malignant in 417/910 (45.8%) subjects and non-malignant in 372/910 (40.9%) subjects. An additional 121/910 (13.3%) were read as inconclusive. One-month follow-up in this interim analysis is not sufficient to calculate the true negative rate or diagnostic yield. Tissue adequacy for genetic testing was 80.0% (56 of 70 lesions sent for testing). The ENB-related pneumothorax rate was 4.9% (49/1,000) overall and 3.2% (32/1,000) CTCAE Grade ≥2 (primary endpoint). The ENB-related Grade ≥2 bronchopulmonary hemorrhage and Grade ≥4 respiratory failure rates were 1.0 and 0.6%, respectively. CONCLUSIONS One-month results of the first 1,000 subjects enrolled demonstrate low adverse event rates in a generalizable population across diverse practice settings. Continued enrollment and follow-up are required to calculate the true negative rate and delineate the patient, lesion, and procedural factors contributing to diagnostic yield. TRIAL REGISTRATION ClinicalTrials.gov NCT02410837 . Registered 31 March 2015.
Collapse
Affiliation(s)
| | | | - Javier Flandes
- Pulmonary Department, IIS-Fundacion Jimenez Diaz University Hospital, CIBERES, Madrid, Spain
| | - Thomas R Gildea
- Department of Pulmonary, Allergy, and Critical Care Medicine and Transplant Center, Cleveland Clinic, Cleveland, OH, USA
| | | | - William S Krimsky
- Pulmonary and Critical Care Associates of Baltimore, Baltimore, MD, USA
| | - Douglas J Minnich
- Division of Cardiothoracic Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
- Present Address: Princeton Baptist Medical Center, Birmingham, AL, USA
| | - Septimiu D Murgu
- Interventional Pulmonology Fellowship Program, The University of Chicago Medicine, Chicago, IL, USA
| | - Michael Pritchett
- Pulmonary Department, Pinehurst Medical Clinic and FirstHealth Moore Regional Hospital, Pinehurst, NC, USA
| | - Eric M Toloza
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, FL, USA
- Department of Surgery and Department of Oncologic Sciences, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Momen M Wahidi
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | | | - Erik E Folch
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Bulfinch 148, Boston, MA, 02114, USA.
| |
Collapse
|
10
|
Wijayatunga RAM. Foreword: message from the Editor. Lung Cancer Manag 2016; 5:155-157. [PMID: 30643559 PMCID: PMC6310321 DOI: 10.2217/lmt-2017-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|