1
|
Sansbury BM, Masciarelli SB, Kaouser S, Tharp OM, Banas KH, Kmiec EB. Mutation-Specific CRISPR Targeting with SaCas9 and AsCas12a Restores Therapeutic Sensitivity in Treatment-Resistant Melanoma. CRISPR J 2024; 7:366-373. [PMID: 39387253 DOI: 10.1089/crispr.2024.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Background: Melanoma remains one of the most challenging cancers to treat effectively with drug resistant remaining a constant concern, primarily with activating BRAF mutations. Mutations in the BRAF gene appear in approximately 50% of patients, 90% of which are V600E. Two frontline BRAF inhibitors (BRAFi), vemurafenib and dabrafenib, are frequently used to treat unresectable or metastatic BRAF V600E melanoma. Initial response rates are high, but soon thereafter, 70-80% of patients develop resistance to treatment within a year. A major mechanism of resistance is the generation of a secondary Q61K mutation in the NRAS gene. Methods: We have developed an approach in which a CRISPR-Cas complex can be designed to distinguish between mutant genes enabling resistance to standard care in tumor cells and normal genomes of healthy cells. For the first time, we demonstrated the utility of two CRISPR-directed mutation-specific editing approaches to restore BRAFi sensitivity in BRAFV600E/NRASQ61K resistant A375 cells. Results: We utilize an AsCas12a protospacer adjacent motif site created by the NRAS Q61K mutation and the Q61K mutation in the critical seed region of an SaCas9 sgRNA for Q61K-selective targeting. We show here that both approaches allow for effective NRAS targeting of only mutated-Q61K and after CRISPR-directed Q61K-targeting, previously resistant A375 cells are re-sensitized to BRAFi treatment. Conclusion: Our data support the feasibility of the development of CRISPR-Cas therapeutic approaches to the treatment of melanoma. Successful therapeutic CRISPR-directed gene editing would enable both specific and efficient editing of a mutation-specific targeting approach eliminate concern for on- and off-target damage to the genomes of healthy cells.
Collapse
Affiliation(s)
- Brett M Sansbury
- Gene Editing Institute, ChristianaCare Health System, Newark, Delaware
| | | | - Salma Kaouser
- Gene Editing Institute, ChristianaCare Health System, Newark, Delaware
| | - Olivia M Tharp
- Gene Editing Institute, ChristianaCare Health System, Newark, Delaware
- Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware
| | - Kelly H Banas
- Gene Editing Institute, ChristianaCare Health System, Newark, Delaware
| | - Eric B Kmiec
- Gene Editing Institute, ChristianaCare Health System, Newark, Delaware
| |
Collapse
|
2
|
Constantinou SM, Bennett DC. Cell Senescence and the Genetics of Melanoma Development. Genes Chromosomes Cancer 2024; 63:e23273. [PMID: 39422311 DOI: 10.1002/gcc.23273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024] Open
Abstract
Cutaneous malignant melanoma is an aggressive skin cancer with an approximate lifetime risk of 1 in 38 in the UK. While exposure to ultraviolet radiation is a key environmental risk factor for melanoma, up to ~10% of patients report a family history of melanoma, and ~1% have a strong family history. The understanding of causal mutations in melanoma has been critical to the development of novel targeted therapies that have contributed to improved outcomes for late-stage patients. Here, we review current knowledge of the genes affected by familial melanoma mutations and their partial overlap with driver genes commonly mutated in sporadic melanoma development. One theme linking a set of susceptibility loci/genes is the regulation of skin pigmentation and suntanning. The largest functional set of susceptibility variants, typically with high penetrance, includes CDKN2A, RB1, and telomerase reverse transcriptase (TERT) mutations, associated with attenuation of cell senescence. We discuss the mechanisms of action of these gene sets in the biology and progression of nevi and melanoma.
Collapse
Affiliation(s)
- Sophie M Constantinou
- Molecular & Cellular Sciences Research Section, City St George's, University of London, London, UK
| | - Dorothy C Bennett
- Molecular & Cellular Sciences Research Section, City St George's, University of London, London, UK
| |
Collapse
|
3
|
Yang Y, Bai Q, Liu F, Zhang S, Tang W, Liu L, Xing Z, Wang H, Zhang C, Yang Y, Fan H. Establishment of the Diagnostic Signature of Ferroptosis Genes in Multiple Sclerosis. Biochem Genet 2024:10.1007/s10528-024-10832-3. [PMID: 38886317 DOI: 10.1007/s10528-024-10832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
Ferroptosis is a novel form of membrane-dependent cell death that differs from other cell death modalities such as necrosis, apoptosis, and autophagy. Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system primarily affecting brain and spinal cord neurons. Although the pathogenesis of these two conditions may seem unrelated, recent studies have indicated a connection between ferroptosis and multiple sclerosis. In fact, ferroptosis plays a significant role in the development of MS, as evidenced by the presence of elevated iron levels and iron metabolism abnormalities in the brains, spinal cords, and other neurons of MS patients. These abnormalities disrupt iron homeostasis within cells, leading to the occurrence of ferroptosis. However, there is currently a lack of research on the diagnostic value of ferroptosis-related genes in multiple sclerosis. In this study, we employed bioinformatics methods to identify ferroptosis-related genes (ATM, GSK3B, HMGCR, KLF2, MAPK1, NFE2L1, NRAS, PCBP1, PIK3CA, RPL8, VDAC3) associated with the diagnosis of multiple sclerosis and constructed a diagnostic model. The results demonstrated that the diagnostic model accurately identified the patients' condition. Subsequently, subgroup analysis was performed based on the expression levels of ferroptosis-related genes, dividing patients into high and low expression groups. The results showed differences in immune function and immune cell infiltration between the two groups. Our study not only confirms the correlation between ferroptosis and multiple sclerosis but also demonstrates the diagnostic value of ferroptosis-related genes in the disease. This provides guidance for clinical practice and direction for further mechanistic research.
Collapse
Affiliation(s)
- Yang Yang
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Qianqian Bai
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Fangfei Liu
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Shumin Zhang
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Wenchao Tang
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Ling Liu
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Zhehua Xing
- Department of Trauma Center, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Hao Wang
- Department of Trauma Center, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Chi Zhang
- Department of Trauma Center, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yanhui Yang
- Department of Trauma Center, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, China.
| | - Hua Fan
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
4
|
Niessner H, Hüsch A, Kosnopfel C, Meinhardt M, Westphal D, Meier F, Schilling B, Sinnberg T. Exploring the In Vitro and In Vivo Therapeutic Potential of BRAF and MEK Inhibitor Combination in NRAS-Mutated Melanoma. Cancers (Basel) 2023; 15:5521. [PMID: 38067230 PMCID: PMC10705743 DOI: 10.3390/cancers15235521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 10/16/2024] Open
Abstract
INTRODUCTION Patients with NRAS-mutant metastatic melanoma often have an aggressive disease requiring a fast-acting, effective therapy. The MEK inhibitor binimetinib shows an overall response rate of 15% in patients with NRAS-mutant melanoma, providing a backbone for combination strategies. Our previous studies demonstrated that in NRAS-mutant melanoma, the antitumor activity of the MEK inhibitor binimetinib was significantly potentiated by the BRAFV600E/K inhibitor encorafenib through the induction of ER stress, leading to melanoma cell death by apoptotic mechanisms. Encorafenib combined with binimetinib was well tolerated in a phase III trial showing potent antitumor activity in BRAF-mutant melanoma, making a rapid evaluation in NRAS-mutant melanoma imminently feasible. These data provide a mechanistic rationale for the evaluation of binimetinib combined with encorafenib in preclinical and clinical studies on NRAS-mutant metastatic melanoma. METHODS The combination of BRAFi plus MEKi was tested in a monolayer culture of patient-derived cell lines and in corresponding patient-derived tissue slice cultures of NRAS-mutant melanoma. To investigate the treatment in vivo, NSG (NOD. Cg-PrkdcscidIl2rgtm1Wjl/SzJ) mice were subcutaneously injected with three different BRAF wild-type melanoma models harboring oncogenic NRAS mutations and treated orally with encorafenib (6 mg/kg body weight, daily) with or without binimetinib (8 mg/kg body weight, twice daily). In parallel, an individual healing attempt was carried out by treating one patient with an NRAS-mutated tumor. RESULTS Encorafenib was able to enhance the inhibitory effect on cell growth of binimetinib only in the cell line SKMel147 in vitro. It failed to enhance the apoptotic effect found in two other NRAS-mutated cell lines. Encorafenib led to a hyperactivation of ERK which could be reduced with the combinational treatment. In two of the three patient-derived tissue slice culture models of NRAS-mutant melanomas, a slight tendency of a combinatorial effect was seen which was not significant. Encorafenib showed a slight induction of the ER stress genes ATF4, CHOP, and NUPR1. The combinational treatment was able to enhance this effect, but not significantly. In the mouse model, the combination therapy of encorafenib with binimetinib resulted in reduced tumor growth compared to the control and encorafenib groups; however, the best effect in terms of tumor growth inhibition was measured in the binimetinib therapy group. The therapy showed no effect in an individual healing attempt for a patient suffering from metastatic, therapy-refractory NRAS-mutated melanoma. CONCLUSION In in vitro and ex vivo settings, the combination therapy was observed to elicit a response; however, it did not amplify the efficacy observed with binimetinib alone, whereas in a patient, the combinational treatment remained ineffective. The preclinical in vivo data showed no increased combinatorial effect. However, the in vivo effect of binimetinib as monotherapy was unexpectedly high in the tested regimen. Nevertheless, binimetinib proved to be advantageous in the treatment of melanoma in vivo and led to high rates of apoptosis in vitro; hence, it still seems to be a good base for combination with other substances in the treatment of patients with NRAS-mutant melanoma.
Collapse
Affiliation(s)
- Heike Niessner
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, Liebermeisterstr. 25, 72076 Tuebingen, Germany;
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, 72076 Tuebingen, Germany
| | - Anna Hüsch
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, Liebermeisterstr. 25, 72076 Tuebingen, Germany;
| | - Corinna Kosnopfel
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany;
| | - Matthias Meinhardt
- Department of Pathology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany;
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany; (D.W.); (F.M.)
| | - Dana Westphal
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany; (D.W.); (F.M.)
- Department of Dermatology, Carl Gustav Carus Medical Center, TU Dresden, 01307 Dresden, Germany
| | - Friedegund Meier
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany; (D.W.); (F.M.)
- Department of Dermatology, Carl Gustav Carus Medical Center, TU Dresden, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden, TU Dresden, 01307 Dresden, Germany
| | - Bastian Schilling
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany;
| | - Tobias Sinnberg
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, Liebermeisterstr. 25, 72076 Tuebingen, Germany;
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, 72076 Tuebingen, Germany
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
5
|
Knittel CH, Devaraj NK. Bioconjugation Strategies for Revealing the Roles of Lipids in Living Cells. Acc Chem Res 2022; 55:3099-3109. [PMID: 36215688 DOI: 10.1021/acs.accounts.2c00511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The structural boundaries of living cells are composed of numerous membrane-forming lipids. Lipids not only are crucial for the cellular compartmentalization but also are involved in cell signaling as well as energy storage. Abnormal lipid levels have been linked to severe human diseases such as cancer, multiple sclerosis, neurodegenerative diseases, as well as lysosomal storage disorders. Given their biological significance, there is immense interest in studying lipids and their effect on cells. However, limiting factors include the low solubility of lipids, their structural complexity, and the challenge of using genetic techniques to directly manipulate lipid structure. Current methods to study lipids rely mostly on lipidomics, which analyzes the composition of lipid extracts using mass spectrometry. Although, these efforts have successfully catalogued and profiled a great number of lipids in cells, many aspects about their exact functional role and subcellular distribution remain enigmatic.In this Account, we outline how our laboratory developed and applied different bioconjugation strategies to study the role of lipids and lipid modifications in cells. Inspired by our ongoing work on developing lipid bioconjugation strategies to generate artificial cell membranes, we developed a ceramide synthesis method in live cells using a salicylaldehyde ester that readily reacts with sphingosine in form of a traceless ceramide ligation. Our study not only confirmed existing knowledge about the association of ceramides with cell death, but also gave interesting new findings about the structure-function relationship of ceramides in apoptosis. Our initial efforts led us to investigate probes that detect endogenous sphingolipids using live cell imaging. We describe the development of a fluorogenic probe that reacts chemoselectively with sphingosine in living cells, enabling the detection of elevated endogenous levels of this biomarker in human disease. Building on our interest in the fluorescence labeling of lipids, we have also explored the use of bioorthogonal reactions to label chemically synthesized lipid probes. We discuss the development of photocaged dihydrotetrazine lipids, where the initiation of the bioorthogonal reaction can be triggered by visible light, allowing for live cell modification of membranes with spatiotemporal control.Finally, proteins are often post-translationally modified by lipids, which have important effects on protein subcellular localization and function. Controlling lipid modifications with small molecule probes could help reveal the function of lipid post-translational modifications and could potentially inspire novel therapeutic strategies. We describe how our previous studies on synthetic membrane formation inspired us to develop an amphiphilic cysteine derivative that depalmitoylates membrane-bound S-acylated proteins in live cells. Ultimately, we applied this amphiphile mediated depalmitoylation (AMD) in studies investigating the palmitoylation of cancer relevant palmitoylated proteins in healthy and diseased cells.
Collapse
Affiliation(s)
- Caroline H Knittel
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
6
|
Hirata AS, Rezende-Teixeira P, Machado-Neto JA, Jimenez PC, Clair JJL, Fenical W, Costa-Lotufo LV. Seriniquinones as Therapeutic Leads for Treatment of BRAF and NRAS Mutant Melanomas. Molecules 2021; 26:7362. [PMID: 34885944 PMCID: PMC8658889 DOI: 10.3390/molecules26237362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
Isolated from the marine bacteria Serinicoccus sp., seriniquinone (SQ1) has been characterized by its selective activity in melanoma cell lines marked by its modulation of human dermcidin and induction of autophagy and apoptosis. While an active lead, the lack of solubility of SQ1 in both organic and aqueous media has complicated its preclinical evaluation. In response, our team turned its effort to explore analogues with the goal of returning synthetically accessible materials with comparable selectivity and activity. The analogue SQ2 showed improved solubility and reached a 30-40-fold greater selectivity for melanoma cells. Here, we report a detailed comparison of the activity of SQ1 and SQ2 in SK-MEL-28 and SK-MEL-147 cell lines, carrying the top melanoma-associated mutations, BRAFV600E and NRASQ61R, respectively. These studies provide a definitive report on the activity, viability, clonogenicity, dermcidin expression, autophagy, and apoptosis induction following exposure to SQ1 or SQ2. Overall, these studies showed that SQ1 and SQ2 demonstrated comparable activity and modulation of dermcidin expression. These studies are further supported through the evaluation of a panel of basal expression of key-genes related to autophagy and apoptosis, providing further insight into the role of these mutations. To explore this rather as a survival or death mechanism, autophagy inhibition sensibilized BRAF mutants to SQ1 and SQ2, whereas the opposite happened to NRAS mutants. These data suggest that the seriniquinones remain active, independently of the melanoma mutation, and suggest the future combination of their application with inhibitors of autophagy to treat BRAF-mutated tumors.
Collapse
Affiliation(s)
- Amanda S. Hirata
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (A.S.H.); (P.R.-T.); (J.A.M.-N.)
| | - Paula Rezende-Teixeira
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (A.S.H.); (P.R.-T.); (J.A.M.-N.)
| | - João Agostinho Machado-Neto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (A.S.H.); (P.R.-T.); (J.A.M.-N.)
| | - Paula C. Jimenez
- Institute of Marine Science, Federal University of São Paulo, Santos 11070-100, SP, Brazil;
| | - James J. La Clair
- Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, CA 92093-0358, USA;
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, La Jolla, San Diego, CA 92093-0204, USA;
| | - Leticia V. Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (A.S.H.); (P.R.-T.); (J.A.M.-N.)
| |
Collapse
|
7
|
Jandova J, Wondrak GT. Vemurafenib Drives Epithelial-to-Mesenchymal Transition Gene Expression in BRAF Inhibitor‒Resistant BRAF V600E/NRAS Q61K Melanoma Enhancing Tumor Growth and Metastasis in a Bioluminescent Murine Model. J Invest Dermatol 2021; 142:1456-1465.e1. [PMID: 34687745 PMCID: PMC9021323 DOI: 10.1016/j.jid.2021.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/03/2021] [Accepted: 10/10/2021] [Indexed: 12/22/2022]
Abstract
BRAF inhibitor (BRAFi) resistance compromises long-term survivorship of patients with malignant melanoma, and mutant NRAS is a major mediator of BRAFi resistance. In this study, employing phenotypic and transcriptomic analysis of isogenic melanoma cells that differ only by NRAS mutational status (BRAFi-sensitive A375-BRAFV600E/NRASQ61 vs. BRAFi-resistant A375-BRAFV600E/NRASQ61K), we show that BRAFi (vemurafenib) treatment selectively targets BRAFV600E/NRASQ61K cells upregulating epithelial-to-mesenchymal transition (EMT) gene expression, paradoxically promoting invasiveness and metastasis in vitro and in vivo. First, NanoString nCounter transcriptomic analysis identified the upregulation of specific gene expression networks (EMT and EMT to metastasis) as a function of NRASQ61K status. Strikingly, BRAFi treatment further exacerbated the upregulation of genes promoting EMT in BRAFV600E/NRASQ61K cells (with opposing downregulation of EMT-driver genes in the BRAFV600E/NRASQ61 genotype) as detected by EMT-focused RT2 Profiler qPCR array analysis. In BRAFV600E/NRASQ61K cells, BRAFi treatment enhanced proliferation and invasiveness, together with activation of phosphorylated protein kinase B (Ser473), with opposing phenotypic effects observable in BRAFV600E/NRASQ61 cells displaying downregulation of phosphorylated protein kinase B and phosphorylated extracellular signal-regulated kinase 1/2. In a SCID mouse bioluminescent melanoma metastasis model, BRAFi treatment enhanced lung tumor burden imposed by BRAFV600E/NRASQ61K cells while blocking BRAFV600E/NRASQ61 metastasis. These preclinical data document the BRAFi-driven enhancement of tumorigenesis and metastasis in BRAFi-resistant human BRAFV600E/NRASQ61K melanoma, a finding with potential clinical implications for patients with NRAS-driven BRAFi-resistant tumors receiving BRAFi treatment.
Collapse
Affiliation(s)
- Jana Jandova
- Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona, USA; UA Cancer Center, The University of Arizona, Tucson, Arizona, USA
| | - Georg T Wondrak
- Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona, USA; UA Cancer Center, The University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
8
|
Atypical clear cell sarcoma of the pleura presenting as large pleural effusion with 22q12 abnormality: A challenging case with twists and turns. HUMAN PATHOLOGY: CASE REPORTS 2021. [DOI: 10.1016/j.ehpc.2021.200489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Abstract
Malignant melanoma is a neoplasm originating in the melanocytes in the skin. Although malignant melanoma is the third most common cutaneous cancer, it is recognized as the main cause of skin cancer-related mortality, and its incidence is rising. The natural history of malignant melanoma involves an inconsistent and insidious skin cancer with great metastatic potential. Increased ultra-violet (UV) skin exposure is undoubtedly the greatest risk factor for developing cutaneous melanoma; however, a plethora of risk factors are now recognized as causative. Moreover, modern oncology now considers melanoma proliferation a complex, multifactorial process with a combination of genetic, epigenetic, and environmental factors all known to be contributory to tumorgenesis. Herein, we wish to outline the epidemiological, molecular, and biological processes responsible for driving malignant melanoma proliferation.
Collapse
Affiliation(s)
| | - Nicola Miller
- Surgery, National University of Ireland Galway, Galway, IRL
| | - Niall M McInerney
- Plastic, Aesthetic, and Reconstructive Surgery, Galway University Hospitals, Galway, IRL
| |
Collapse
|
10
|
Yang G, Liu S, Maghsoudloo M, Shasaltaneh MD, Kaboli PJ, Zhang C, Deng Y, Heidari H, Entezari M, Fu S, Wen Q, Imani S. PLA1A expression as a diagnostic marker of BRAF-mutant metastasis in melanoma cancer. Sci Rep 2021; 11:6056. [PMID: 33723350 PMCID: PMC7961027 DOI: 10.1038/s41598-021-85595-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/02/2021] [Indexed: 01/31/2023] Open
Abstract
BRAF and NRAS are the most reported mutations associated to melanomagenesis. The lack of accurate diagnostic markers in response to therapeutic treatment in BRAF/NRAS-driven melanomagenesis is one of the main challenges in melanoma personalized therapy. In order to assess the diagnostic value of phosphatidylserine-specific phospholipase A1-alpha (PLA1A), a potent lysophospholipid mediating the production of lysophosphatidylserine, PLA1A mRNA and serum levels were compared in subjects with malignant melanoma (n = 18), primary melanoma (n = 13), and healthy subjects (n = 10). Additionally, the correlation between histopathological subtypes of BRAF/NRAS-mutated melanoma and PLA1A was analyzed. PLA1A expression was significantly increased during melanogenesis and positively correlated to disease severity and histopathological markers of metastatic melanoma. PLA1A mRNA and serum levels were significantly higher in patients with BRAF-mutated melanoma compared to the patients with NRAS-mutated melanoma. Notably, PLA1A can be used as a diagnostic marker for an efficient discrimination between naïve melanoma samples and advanced melanoma samples (sensitivity 91%, specificity 57%, and AUC 0.99), as well as BRAF-mutated melanoma samples (sensitivity 62%, specificity 61%, and AUC 0.75). Our findings suggest that PLA1A can be considered as a potential diagnostic marker for advanced and BRAF-mutated melanoma.
Collapse
Affiliation(s)
- Gang Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Oncology, Anyue Hospital of Traditional Chinese Medicine, Second Ziyang Hospital of Traditional Chinese Medicine, Ziyang, Sichuan, China
| | - Shuya Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Mazaher Maghsoudloo
- Laboratory of Systems Biology and Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Parham Jabbarzadeh Kaboli
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Cuiwei Zhang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Youcai Deng
- Institute of Materia Medical, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hajar Heidari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - ShaoZhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - QingLian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
11
|
Emerging Perspective: Role of Increased ROS and Redox Imbalance in Skin Carcinogenesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8127362. [PMID: 31636809 PMCID: PMC6766104 DOI: 10.1155/2019/8127362] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/25/2019] [Accepted: 07/31/2019] [Indexed: 02/08/2023]
Abstract
Strategies to battle malignant tumors have always been a dynamic research endeavour. Although various vehicles (e.g., chemotherapeutic therapy, radiotherapy, surgical resection, etc.) are used for skin cancer management, they mostly remain unsatisfactory due to the complex mechanism of carcinogenesis. Increasing evidence indicates that redox imbalance and aberrant reactive oxygen species (ROS) are closely implicated in the oncogenesis of skin cancer. When ROS production goes beyond their clearance, excessive or accumulated ROS could disrupt redox balance, induce oxidative stress, and activate the altered ROS signals. These would damage cellular DNA, proteins, and lipids, further leading to gene mutation, cell hyperproliferation, and fatal lesions in cells that contribute to carcinogenesis in the skin. It has been known that ROS-mediated skin carcinogenesis involves multiple ways, including modulating related signaling pathways, changing cell metabolism, and causing the instability of the genome and epigenome. Nevertheless, the exact role of ROS in skin cancer has not been thoroughly elucidated. In spite of ROS inducing skin carcinogenesis, toxic-dose ROS could trigger cell death/apoptosis and, therefore, may be an efficient therapeutic tool to battle skin cancer. Considering the dual role of ROS in the carcinogenesis and treatment of skin cancer, it would be essential to clarify the relationship between ROS and skin cancer. Thus, in this review, we get the related data together to seek the connection between ROS and skin carcinogenesis. Besides, strategies basing on ROS to fight skin cancer are discussed.
Collapse
|
12
|
Bertoli E, Giavarra M, Vitale MG, Minisini AM. Neuroblastoma rat sarcoma mutated melanoma: That's what we got so far. Pigment Cell Melanoma Res 2019; 32:744-752. [PMID: 31403745 DOI: 10.1111/pcmr.12819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/19/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022]
Abstract
Neuroblastoma rat sarcoma (NRAS) mutation, occurring in about 20%-30% of cutaneous melanomas, leads to activation of RAS-RAF-MAPK cascade and represents a clear distinct clinicopathological entity in melanoma. In contrast with BRAF mutant melanoma, no specific target therapies are available outside the setting of clinical trials. In the field of immunoncology, the predictive role of NRAS mutation with respect to checkpoint inhibitors treatment has not clearly established and deserves further investigation. At present, the standard treatment is the same as for BRAF wild type melanoma. Ongoing trials are exploring novel combination strategies among patients with advanced NRAS mutant melanoma.
Collapse
Affiliation(s)
- Elisa Bertoli
- Department of Medicine (DAME), University of Udine, Udine, Italy.,Department of Oncology, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Marco Giavarra
- Department of Medicine (DAME), University of Udine, Udine, Italy.,Department of Oncology, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Maria Grazia Vitale
- Department of Medicine (DAME), University of Udine, Udine, Italy.,Department of Oncology, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | | |
Collapse
|