1
|
Nehal N, Rohilla A, Sartaj A, Baboota S, Ali J. Folic acid modified precision nanocarriers: charting new frontiers in breast cancer management beyond conventional therapies. J Drug Target 2024; 32:855-873. [PMID: 38748872 DOI: 10.1080/1061186x.2024.2356735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/16/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
Breast cancer presents a significant global health challenge, ranking highest incidence rate among all types of cancers. Functionalised nanocarriers offer a promising solution for precise drug delivery by actively targeting cancer cells through specific receptors, notably folate receptors. By overcoming the limitations of passive targeting in conventional therapies, this approach holds the potential for enhanced treatment efficacy through combination therapy. Encouraging outcomes from studies like in vitro and in vivo, underscore the promise of this innovative approach. This review explores the therapeutic potential of FA (Folic acid) functionalised nanocarriers tailored for breast cancer management, discussing various chemical modification techniques for functionalization. It examines FA-conjugated nanocarriers containing chemotherapeutics to enhance treatment efficacy and addresses the pharmacokinetic aspect of these functionalised nanocarriers. Additionally, the review integrates active targeting via folic acid with theranostics, photothermal therapy, and photodynamic therapy, offering a comprehensive management strategy. Emphasising rigorous experimental validation for practical utility, the review underscores the need to bridge laboratory research to clinical application. While these functionalised nanocarriers show promise, their credibility and applicability in real-world settings necessitate thorough validation for effective clinical use.
Collapse
Affiliation(s)
- Nida Nehal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Aashish Rohilla
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Ali Sartaj
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
2
|
Rodrigues Arruda B, Mendes MGA, Freitas PGCD, Reis AVF, Lima T, Crisóstomo LCCF, Nogueira KAB, Pessoa C, Petrilli R, Eloy JO. Nanocarriers for delivery of taxanes: A review on physicochemical and biological aspects. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Bouzo BL, Lores S, Jatal R, Alijas S, Alonso MJ, Conejos-Sánchez I, de la Fuente M. Sphingomyelin nanosystems loaded with uroguanylin and etoposide for treating metastatic colorectal cancer. Sci Rep 2021; 11:17213. [PMID: 34446776 PMCID: PMC8390746 DOI: 10.1038/s41598-021-96578-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/10/2021] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer is the third most frequently diagnosed cancer malignancy and the second leading cause of cancer-related deaths worldwide. Therefore, it is of utmost importance to provide new therapeutic options that can improve survival. Sphingomyelin nanosystems (SNs) are a promising type of nanocarriers with potential for association of different types of drugs and, thus, for the development of combination treatments. In this work we propose the chemical modification of uroguanylin, a natural ligand for the Guanylyl Cyclase (GCC) receptor, expressed in metastatic colorectal cancer tumors, to favour its anchoring to SNs (UroGm-SNs). The anti-cancer drug etoposide (Etp) was additionally encapsulated for the development of a combination strategy (UroGm-Etp-SNs). Results from in vitro studies showed that UroGm-Etp-SNs can interact with colorectal cancer cells that express the GCC receptor and mediate an antiproliferative response, which is more remarkable for the drugs in combination. The potential of UroGm-Etp-SNs to treat metastatic colorectal cancer cells was complemented with an in vivo experiment in a xenograft mice model.
Collapse
Affiliation(s)
- Belén L Bouzo
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, CIBERONC, 15706, Santiago de Compostela, Spain
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela (USC), Av. Barcelona s/n Campus Vida, 15706, Santiago de Compostela, Spain
| | - Saínza Lores
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, CIBERONC, 15706, Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
| | - Raneem Jatal
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, CIBERONC, 15706, Santiago de Compostela, Spain
| | - Sandra Alijas
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, CIBERONC, 15706, Santiago de Compostela, Spain
| | - María José Alonso
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela (USC), Av. Barcelona s/n Campus Vida, 15706, Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
- Faculty of Pharmacy, University of Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Inmaculada Conejos-Sánchez
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela (USC), Av. Barcelona s/n Campus Vida, 15706, Santiago de Compostela, Spain
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, CIBERONC, 15706, Santiago de Compostela, Spain.
| |
Collapse
|
4
|
Narala A, Suram D, Veerabrahma K. Pharmacokinetic and pharmacodynamic studies of iloperidone-loaded lipid nanoemulsions via oral route of administration. Drug Dev Ind Pharm 2021; 47:618-625. [PMID: 33784221 DOI: 10.1080/03639045.2021.1908332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Iloperidone (IL) is practically insoluble in water and has significant first-pass metabolism, resulting in low oral bioavailability in humans (36%). IL lipid nanoemulsions (IL-LNEs) were prepared to improve oral bioavailability. IL-LNEs were formulated by hot homogenization and ultrasonication method. Soybean oil and egg lecithin in various concentrations as emulsifier were used in the preparation of LNEs. Dynamic light scattering technique was used for globule size analysis. All LNE formulations showed narrow size distribution and the average globule size and Poly Dispersity Index (PDI) were found to be in between 182.2 ± 2.8 to 222.3 ± 1.9 nm and 0.200 ± 0.004 to 0.274 ± 0.005 respectively. Zeta potential values varied from -20.0 ± 0.15 to -28.9 ± 0.30 mV which indicated stability of prepared LNEs. All formulations showed good entrapment efficiency ranging from 99.07 ± 0.01 to 99.28 ± 0.01% when separated using centrisart tubes and the drug content varied from 96.99 ± 0.94 to 99.06 ± 0.36%. Physical stability testing indicated the stability of all LNEs and optimized LNE-IL4 was found stable for 3 months at both refrigerated (4 °C) and room temperature (25 °C). During in vivo studies in wistar rats, the optimized LNE showed 2.47-fold improvement in the oral bioavailability and superior (1.22-fold) pharmacodynamic activity when compared to marketed tablet suspension (Ilosure-4®) in suppressing the hyperlocomotor activity, being induced by MK-801 (Dizocilpine).
Collapse
Affiliation(s)
- Arjun Narala
- Laboratory of Nanotechnology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, India
| | - Dinesh Suram
- Laboratory of Nanotechnology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, India
| | - Kishan Veerabrahma
- Laboratory of Nanotechnology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, India
| |
Collapse
|
5
|
Chen S, Song Z, Feng R. Recent Development of Copolymeric Nano-Drug Delivery System for Paclitaxel. Anticancer Agents Med Chem 2020; 20:2169-2189. [PMID: 32682385 DOI: 10.2174/1871520620666200719001038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/25/2020] [Accepted: 06/25/2020] [Indexed: 11/22/2022]
Abstract
Background:
Paclitaxel (PTX) has been clinically used for several years due to its good therapeutic
effect against cancers. Its poor water-solubility, non-selectivity, high cytotoxicity to normal tissue and worse
pharmacokinetic property limit its clinical application.
Objective:
To review the recent progress on the PTX delivery systems.
Methods:
In recent years, the copolymeric nano-drug delivery systems for PTX are broadly studied. It mainly
includes micelles, nanoparticles, liposomes, complexes, prodrugs and hydrogels, etc. They were developed or
further modified with target molecules to investigate the release behavior, targeting to tissues, pharmacokinetic
property, anticancer activities and bio-safety of PTX. In the review, we will describe and discuss the recent
progress on the nano-drug delivery system for PTX since 2011.
Results:
The water-solubility, selective delivery to cancers, tissue toxicity, controlled release and pharmacokinetic
property of PTX are improved by its encapsulation into the nano-drug delivery systems. In addition, its
activities against cancer are also comparable or high when compared with the commercial formulation.
Conclusion:
Encapsulating PTX into nano-drug carriers should be helpful to reduce its toxicity to human, keeping
or enhancing its activity and improving its pharmacokinetic property.
Collapse
Affiliation(s)
- Shiyu Chen
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, China
| | - Zhimei Song
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, China
| | - Runliang Feng
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, China
| |
Collapse
|
6
|
Folate Modified Long Circulating Nano-Emulsion as a Promising Approach for Improving the Efficiency of Chemotherapy Drugs in Cancer Treatment. Pharm Res 2020; 37:242. [PMID: 33188481 DOI: 10.1007/s11095-020-02811-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 04/01/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE In order to improve the therapeutic efficiency of the chemotherapeutic drug paclitaxel in tumors, a folate-based Paclitaxel nanoemulsion (FNEs) was developed for tumor targeted treatment. METHODS In this study, we designed a folate-targeted nanoemulsion (folate/PEG-DSPE/nanoemulsion, FNEs) based on the traditional nanoemulsion using the principle of long-circulation targeting receptor mediated. The nanoemulsion (folate/PEG-DSPE/nanoemulsion, FNEs) was fabricated using high-pressure homogenization with a microfluidizer. RESULTS The nanoemulsion (folate/PEG-DSPE/nanoemulsion, FNEs) can improve the delivery efficiency of nanocarriers at the tumor site by virtue of the high expression of folate receptors on the tumor surface. Malvern Nanoseries device and transmission electron microscopy (TEM) analyses showed that the nanoemulsions were spherical with an average diameter of 140 nm. The nanoemulsions can effectively carry paclitaxel (PTX) with an encapsulation rate of about 95%. And in vitro experiments have shown that it can efficiently increase the uptake of PTX in 4 T1 breast cancer cells and FNEs had a targeting capability hundredfold higher than that of PTX-loaded nanoemulsions (PTX-NEs) without folate. In vivo experiments have shown that the pharmacokinetic parameters of FNEs were better than those of other PTX groups and FNEs can significantly enhance circulation time in the body of the subcutaneously implanted 4 T1 breast cancer in mice, increase the accumulation of chemotherapy drugs at tumor sites and effectively inhibit tumor growth with lower system toxicity. CONCLUSIONS This study can effectively improve the therapeutic efficiency of chemotherapy drugs for tumors, and provide an useful reference for solving the problem of low efficacy of chemotherapy drugs in clinical treatment of tumors. Graphical Abstract Schematic representation of Folic acid/PEG-DSPE/nano-emulsion (FNEs) specifically target tumor cells and enhanced anti-tumor effects.
Collapse
|
7
|
Nayak K, Misra M. Triamcinolone Acetonide-Loaded PEGylated Microemulsion for the Posterior Segment of Eye. ACS OMEGA 2020; 5:7928-7939. [PMID: 32309702 PMCID: PMC7160842 DOI: 10.1021/acsomega.9b04244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Present work investigates the possibility of a polyethyleneglycolylated (PEGylated) microemulsion (ME) to deliver drug to the posterior segment of eye. Triamcinolone acetonide (TA), a widely used drug in intraocular diseases, was selected as the model drug. Based on solubility and emulsification capacity, components of microemulsion were selected and optimum formulation was obtained using a pseudoternary phase diagram. The optimized ratio of Capmul MCM C8 (oil): AccononMC8-2 (surfactant): Transcutol (cosurfactant): deionized water was 5:35.5:4.5:55. This was further PEGylated using 1,2-distearoylphosphatylethanolamine-polyethyleneglycol 2000 (DSPE-PEG 2000). This PEGylated ME loaded with TA was characterized and evaluated in vitro, ex vivo, and in vivo for topical ocular use. The developed PEGylated ME loaded with TA was homogenous, stable, and nonirritable to eye and had the ability to reach the posterior segment of eye on topical instillation.
Collapse
|
8
|
Asmawi AA, Salim N, Ngan CL, Ahmad H, Abdulmalek E, Masarudin MJ, Abdul Rahman MB. Excipient selection and aerodynamic characterization of nebulized lipid-based nanoemulsion loaded with docetaxel for lung cancer treatment. Drug Deliv Transl Res 2019; 9:543-554. [PMID: 29691812 DOI: 10.1007/s13346-018-0526-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Docetaxel has demonstrated extraordinary anticancer effects on lung cancer. However, lack of optimal bioavailability due to poor solubility and high toxicity at its therapeutic dose has hampered the clinical use of this anticancer drug. Development of nanoemulsion formulation along with biocompatible excipients aimed for pulmonary delivery is a potential strategy to deliver this poorly aqueous soluble drug with improved bioavailability and biocompatibility. In this work, screening and selection of pharmaceutically acceptable excipients at their minimal optimal concentration have been conducted. The selected nanoemulsion formulations were prepared using high-energy emulsification technique and subjected to physicochemical and aerodynamic characterizations. The formulated nanoemulsion had mean particle size and ζ-potential in the range of 90 to 110 nm and - 30 to - 40 mV respectively, indicating high colloidal stability. The pH, osmolality, and viscosity of the systems met the ideal requirement for pulmonary application. The DNE4 formulation exhibited slow drug release and excellent stability even under the influence of extreme environmental conditions. This was further confirmed by transmission electron microscopy as uniform spherical droplets in nanometer range were observed after storage at 45 ± 1 °C for 3 months indicating high thermal stability. The nebulized DNE4 exhibited desirable aerosolization properties for pulmonary delivery application and found to be more selective on human lung carcinoma cell (A549) than normal cell (MRC-5). Hence, these characteristics make the formulation a great candidate for the potential use as a carrier system for docetaxel in targeting lung cancer via pulmonary delivery.
Collapse
Affiliation(s)
- Azren Aida Asmawi
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Norazlinaliza Salim
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Cheng Loong Ngan
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Haslina Ahmad
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Emilia Abdulmalek
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mohd Basyaruddin Abdul Rahman
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
9
|
Narala A, Guda S, Veerabrahma K. Lipid Nanoemulsions of Rebamipide: Formulation, Characterization, and In Vivo Evaluation of Pharmacokinetic and Pharmacodynamic Effects. AAPS PharmSciTech 2019; 20:26. [PMID: 30604333 DOI: 10.1208/s12249-018-1225-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022] Open
Abstract
Rebamipide has low oral bioavailability (10%) due to its low solubility and permeability. Lipid nanoemulsions (LNEs) were prepared in order to improve its oral bioavailability. Rebamipide-loaded lipid nanoemulsions were formulated by hot homogenization and ultrasonication method. Olive oil and egg lecithin in various concentrations as emulsifier were used in the preparation of LNEs. The lipid nanoemulsions were evaluated for various parameters. The globule size, polydispersity index (PDI), and zeta potential (ZP) of the formulations ranged from 230.3 ± 3.88 to 279.8 ± 5.76 nm, 0.204 ± 0.008 to 0.246 ± 0.029, and - 27.7 ± 2.05 to - 31.0 ± 1.87 mV, respectively. Entrapment efficiency and assay values ranged from 99.90 ± 0.006 to 99.92 ± 0.002% and 99.3 ± 0.808 to 99.6 ± 0.360, respectively. Physical stability test results revealed that the optimized LNEs were stable for 2 months at both room (25°C) and refrigerated temperature (4°C). The optimized LNE showed 4.32-fold improvement in the oral bioavailability in comparison to a marketed tablet suspension. In vivo anti ulcer activity of rebamipide LNE was studied by testing the prophylactic effect in preventing the mucosal damage in stomach region. The mucosa of stomach in animals was damaged by per oral administration of 80% alcohol. Maximum prophylactic antiulcer activity was observed by per oral delivery of rebamipide as LNE. Our results indicated that LNEs were a promising approach for the oral delivery of rebamipide for systemic effects along with local effects in protecting gastric region, which gets damaged during peptic ulcers.
Collapse
|
10
|
Liu Y, Hui Y, Ran R, Yang G, Wibowo D, Wang H, Middelberg APJ, Zhao C. Synergetic Combinations of Dual-Targeting Ligands for Enhanced In Vitro and In Vivo Tumor Targeting. Adv Healthc Mater 2018; 7:e1800106. [PMID: 29797508 DOI: 10.1002/adhm.201800106] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/15/2018] [Indexed: 11/11/2022]
Abstract
The concept of dual-ligand targeting has been around for quite some time, but remains controversial due to the intricate interplay between so many different factors such as the choice of dual ligands, their densities, ratios and length matching, etc. Herein, the synthesis of a combinatorial library of single and dual-ligand nanoparticles with systematically varied properties (ligand densities, ligand ratios, and lengths) for tumor targeting is reported. Folic acid (FA) and hyaluronic acid (HA) are used as two model targeting ligands. It is found that the length matching and ligand ratio play critical roles in achieving the synergetic effect of the dual-ligand targeting. When FA is presented on the nanoparticle surface through a 5K polyethylene glycol (PEG) chain, the dual ligand formulations using the HA with either 5K or 10K length do not show any targeting effect, but the right length of HA (7K) with a careful selection of the right ligand ratio do enhance the targeting efficiency and specificity significantly. Further in vitro 3D tumor spheroid models and in vivo xenograft mice models confirm the synergetic targeting efficiency of the optimal dual-ligand formulation (5F2H7K ). This work provides a valuable insight into the design of dual-ligand targeting nanosystems.
Collapse
Affiliation(s)
- Yun Liu
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia QLD 4072 Australia
| | - Yue Hui
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia QLD 4072 Australia
| | - Rui Ran
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia QLD 4072 Australia
| | - Guang‐Ze Yang
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia QLD 4072 Australia
| | - David Wibowo
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia QLD 4072 Australia
| | - Hao‐Fei Wang
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia QLD 4072 Australia
| | - Anton P. J. Middelberg
- Faculty of Engineering Computer and Mathematical Sciences The University of Adelaide Adelaide SA 5005 Australia
| | - Chun‐Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia QLD 4072 Australia
| |
Collapse
|
11
|
Ma L, Chen Q, Ma P, Han MK, Xu Z, Kang Y, Xiao B, Merlin D. iRGD-functionalized PEGylated nanoparticles for enhanced colon tumor accumulation and targeted drug delivery. Nanomedicine (Lond) 2017; 12:1991-2006. [PMID: 28745123 DOI: 10.2217/nnm-2017-0107] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM To enhance the tumor accumulation and targeted drug delivery for colon cancer therapy, iRGD peptide was introduced to the surface of PEGylated camptothecin-loaded nanoparticles (NPs). METHODS Cellular uptake, targeting specificity, biodistribution and antitumor capacity were evaluated. RESULTS The functionalization of iRGD facilitated tumor accumulation and cellular uptake of NPs by Colon-26 cells. Furthermore, the resultant iRGD-PEG-NPs remarkably improved the therapeutic efficacy of camptothecin in vitro and in vivo by inducing a higher degree of tumor cell apoptosis compared with PEG-NPs. CONCLUSION iRGD-PEG-NP is a desired drug delivery system to facilitate the drug accumulation in orthotopic colon tumor tissues and further drug internalization by colon cancer cells.
Collapse
Affiliation(s)
- Lijun Ma
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, PR China
| | - Qiubing Chen
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, PR China
| | - Panpan Ma
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, PR China
| | - Moon Kwon Han
- Institute for Biomedical Sciences, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302, USA
| | - Zhigang Xu
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, PR China
| | - Yuejun Kang
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, PR China
| | - Bo Xiao
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, PR China.,Institute for Biomedical Sciences, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302, USA.,Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| |
Collapse
|
12
|
Azzawi M, Seifalian A, Ahmed W. Nanotechnology for the diagnosis and treatment of diseases. Nanomedicine (Lond) 2016; 11:2025-7. [DOI: 10.2217/nnm-2016-8000] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- May Azzawi
- School of Healthcare Science, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, UK
| | - Alexander Seifalian
- Centre for Nanotechnology & Regenerative Medicine, UCL Division of Surgery & Interventional Science, University College London, London, UK
| | - Waqar Ahmed
- School of Medicine, University of Central Lancashire, Preston, Lancashire, UK
| |
Collapse
|