1
|
Ma J, Qiu J, Wright GA, Wang S. Oxygen/Nitric Oxide Dual-Releasing Nanozyme for Augmenting TMZ-Mediated Apoptosis and Necrosis. Mol Pharm 2025; 22:168-180. [PMID: 39571173 PMCID: PMC11707740 DOI: 10.1021/acs.molpharmaceut.4c00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 01/07/2025]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant brain tumor, with a poor prognosis. Temozolomide (TMZ) represents the standard chemotherapy for GBM but has limited efficacy due to poor targeting and a hypoxic tumor microenvironment (TME). To address these challenges, we developed a dual-gas-releasing, cancer-cell-membrane-camouflaged nanoparticle to deliver TMZ. This nanoceria, camouflaged with a cancer cell membrane (CCM-CeO2), targets explicitly GBM cells and accumulates in lysosomes, triggering the rapid release of TMZ. Additionally, CCM-CeO2 could release oxygen (O2) and nitric oxide (NO) in response to the TME. Synthesized using d-arginine, catalytic nanoceria could decompose excessive hydrogen peroxide (H2O2) in the TME to produce O2, while d-arginine could nonenzymatically react with H2O2 to generate NO. CCM-CeO2 could penetrate GBM spheroids to a depth of 148.3 ± 31 μm, with the O2 and NO produced, reducing HIF-1α protein expression. When loaded with TMZ, CCM-CeO2 could increase the intracellular ROS produced by TMZ, leading to lysosome membrane permeabilization and notably augmented apoptosis and necrosis in GBM cells. An in vitro antitumor assay using spheroids showed that CCM-CeO2 reduced the IC50 value of TMZ from 174.5 to 42.6 μg/mL, likely due to the catalase-like activity of nanoceria. These results suggest that alleviating hypoxia and increasing ROS produced by chemotherapeutics could be an effective therapeutic strategy for treating GBM.
Collapse
Affiliation(s)
- Jun Ma
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| | - Jingjing Qiu
- Department
of Mechanical Engineering & Department of Materials Science and
Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Gus A. Wright
- Flow
Cytometry Facility, College of Veterinary Medicine & Biomedical
Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Shiren Wang
- Department
of Industrial Systems and Engineering & Department of Materials
Science and Engineering & Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
2
|
Li JP, Kuo YC, Liao WN, Yang YT, Chen SY, Chien YT, Wu KH, Wang MY, Chou FI, Yang MH, Hueng DY, Yang CS, Chen JK. Harnessing Nuclear Energy to Gold Nanoparticles for the Concurrent Chemoradiotherapy of Glioblastoma. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2821. [PMID: 37947667 PMCID: PMC10650840 DOI: 10.3390/nano13212821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/26/2023] [Accepted: 09/27/2023] [Indexed: 11/12/2023]
Abstract
Nuclear fission reactions can release massive amounts of energy accompanied by neutrons and γ photons, which create a mixed radiation field and enable a series of reactions in nuclear reactors. This study demonstrates a one-pot/one-step approach to synthesizing radioactive gold nanoparticles (RGNP) without using radioactive precursors and reducing agents. Trivalent gold ions are reduced into gold nanoparticles (8.6-146 nm), and a particular portion of 197Au atoms is simultaneously converted to 198Au atoms, rendering the nanoparticles radioactive. We suggest that harnessing nuclear energy to gold nanoparticles is feasible in the interests of advancing nanotechnology for cancer therapy. A combination of RGNP applied through convection-enhanced delivery (CED) and temozolomide (TMZ) through oral administration demonstrates the synergistic effect in treating glioblastoma-bearing mice. The mean survival for RGNP/TMZ treatment was 68.9 ± 9.7 days compared to that for standalone RGNP (38.4 ± 2.2 days) or TMZ (42.8 ± 2.5 days) therapies. Based on the verification of bioluminescence images, positron emission tomography, and immunohistochemistry inspection, the combination treatment can inhibit the proliferation of glioblastoma, highlighting the niche of concurrent chemoradiotherapy (CCRT) attributed to RGNP and TMZ.
Collapse
Affiliation(s)
- Jui-Ping Li
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan; (J.-P.L.); (W.-N.L.); (Y.-T.Y.); (S.-Y.C.); (Y.-T.C.); (C.-S.Y.)
| | - Yu-Cheng Kuo
- Department of Radiation Oncology, China Medical University Hospital, Taichung 40447, Taiwan;
- School of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Wei-Neng Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan; (J.-P.L.); (W.-N.L.); (Y.-T.Y.); (S.-Y.C.); (Y.-T.C.); (C.-S.Y.)
| | - Ya-Ting Yang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan; (J.-P.L.); (W.-N.L.); (Y.-T.Y.); (S.-Y.C.); (Y.-T.C.); (C.-S.Y.)
| | - Sih-Yu Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan; (J.-P.L.); (W.-N.L.); (Y.-T.Y.); (S.-Y.C.); (Y.-T.C.); (C.-S.Y.)
| | - Yu-Ting Chien
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan; (J.-P.L.); (W.-N.L.); (Y.-T.Y.); (S.-Y.C.); (Y.-T.C.); (C.-S.Y.)
| | - Kuo-Hung Wu
- Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 30013, Taiwan; (K.-H.W.); (M.-Y.W.); (F.-I.C.)
| | - Mei-Ya Wang
- Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 30013, Taiwan; (K.-H.W.); (M.-Y.W.); (F.-I.C.)
| | - Fong-In Chou
- Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 30013, Taiwan; (K.-H.W.); (M.-Y.W.); (F.-I.C.)
| | - Mo-Hsiung Yang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Dueng-Yuan Hueng
- School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Chung-Shi Yang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan; (J.-P.L.); (W.-N.L.); (Y.-T.Y.); (S.-Y.C.); (Y.-T.C.); (C.-S.Y.)
| | - Jen-Kun Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan; (J.-P.L.); (W.-N.L.); (Y.-T.Y.); (S.-Y.C.); (Y.-T.C.); (C.-S.Y.)
- Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
3
|
Wang S, Yu Y, Wang A, Duan X, Sun Y, Wang L, Chu L, Lv Y, Cui N, Fan X, Sha C, Xu L, Sun K. Temozolomide hexadecyl ester targeted plga nanoparticles for drug-resistant glioblastoma therapy via intranasal administration. Front Pharmacol 2022; 13:965789. [PMID: 36059989 PMCID: PMC9429944 DOI: 10.3389/fphar.2022.965789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction: Temozolomide (TMZ) is the first-line drug for glioblastoma (GBM), but it is limited in clinical use due to the drug resistance, poor brain targeting, and side effects. Temozolomide hexadecyl ester (TMZ16e), a TMZ derivative with high lipophilicity, membrane permeability, and high anti-glioma properties, has the potential to reverse drug resistance. In this study, anti-ephrin type-A receptor 3 (EphA3) modified TMZ16e loaded nanoparticles (NPs) were prepared for targeted GBM therapy via intranasal administration to deliver TMZ16e to the brain, treat drug-resistant glioma effectively, and reduce peripheral toxicity. Methods: TMZ16e loaded NPs were prepared by emulsion solvent evaporation method followed by modified with anti-EphA3 (anti-EphA3-TMZ16e-NPs). In vitro evaluations were performed by an MTT assay and flow cytometry analysis. The orthotopic nude mice models were used to evaluate the anti-glioma effect in vivo. Additionally, we investigated the anti-drug resistant mechanism by western blot analysis. Results: The particle size of the prepared NPs was less than 200 nm, and the zeta potential of TMZ16e-NPs and anti-EphA3-TMZ16e-NPs were -23.05 ± 1.48 mV and -28.65 ± 1.20mV, respectively, which is suitable for nasal delivery. In vitro studies have shown that anti-EphA3 modification increased the cellular uptake of nanoparticles in T98G cells. The cytotoxicity in the anti-EphA3-TMZ16e-NPs treated group was significantly higher than that of the TMZ16e-NPs, TMZ16e, and TMZ groups (p < 0.01), and the cell cycle was blocked. Western blotting analysis showed that the TMZ16e-loaded NPs were able to effectively downregulate the expression level of O6-methylguanine-deoxyribonucleic acid-methyltransferase (MGMT) protein in T98G cells and reverse drug resistance. In vivo studies showed that the median survival time of tumor-bearing nude mice in the anti-EphA3-TMZ16e-NPs group was extended to 41 days, which was 1.71-fold higher than that of the saline group and the TUNEL staining results of the brain tissue section indicated that the TMZ16e-loaded NPs could elevate apoptosis in T98G cells. Conclusion: In conclusion, the TMZ16e-loaded NPs can be effectively delivered to the brain and targeted to gliomas, exhibiting better anti-glioma activity, indicating they possess great potential in the treatment of drug-resistant glioma.
Collapse
Affiliation(s)
- Siqi Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Yawen Yu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Aiping Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
- *Correspondence: Aiping Wang,
| | - Xinliu Duan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Yuchen Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Liangxiao Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Liuxiang Chu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Yanan Lv
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Nan Cui
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Xuesong Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Chunjie Sha
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Luye Pharmaceutical Co, Ltd, Yantai, China
| | - Lixiao Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
4
|
Alpuim Costa D, Sampaio-Alves M, Netto E, Fernandez G, Oliveira E, Teixeira A, Daniel PM, Bernardo GS, Amaro C. Hyperbaric Oxygen Therapy as a Complementary Treatment in Glioblastoma-A Scoping Review. Front Neurol 2022; 13:886603. [PMID: 35847231 PMCID: PMC9283648 DOI: 10.3389/fneur.2022.886603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant brain tumor in adults. The mainstay of management for GBM is surgical resection, radiation (RT), and chemotherapy (CT). Even with optimized multimodal treatment, GBM has a high recurrence and poor survival rates ranging from 12 to 24 months in most patients. Recently, relevant advances in understanding GBM pathophysiology have opened new avenues for therapies for recurrent and newly diagnosed diseases. GBM's hypoxic microenvironment has been shown to be highly associated with aggressive biology and resistance to RT and CT. Hyperbaric oxygen therapy (HBOT) may increase anticancer therapy sensitivity by increasing oxygen tension within the hypoxic regions of the neoplastic tissue. Previous data have investigated HBOT in combination with cytostatic compounds, with an improvement of neoplastic tissue oxygenation, inhibition of HIF-1α activity, and a significant reduction in the proliferation of GBM cells. The biological effect of ionizing radiation has been reported to be higher when it is delivered under well-oxygenated rather than anoxic conditions. Several hypoxia-targeting strategies reported that HBOT showed the most significant effect that could potentially improve RT outcomes, with higher response rates and survival and no serious adverse events. However, further prospective and randomized studies are necessary to validate HBOT's effectiveness in the 'real world' GBM clinical practice.
Collapse
Affiliation(s)
- Diogo Alpuim Costa
- Haematology and Oncology Department, CUF Oncologia, Lisbon, Portugal
- NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Lisbon, Portugal
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Centro de Medicina Subaquática e Hiperbárica, Azinhaga dos Ulmeiros, Lisbon, Portugal
- Centro Hiperbárico de Cascais, Cascais, Portugal
| | - Mafalda Sampaio-Alves
- Faculty of Medicine, University of Porto, Oporto, Portugal
- PTSurg – Portuguese Surgical Research Collaborative, Lisbon, Portugal
| | - Eduardo Netto
- Radioncology Department, Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), E.P.E., Lisbon, Portugal
| | | | - Edson Oliveira
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Neurosurgery Department, Cluster CUF Descobertas, Lisbon, Portugal
| | - Andreia Teixeira
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Centro de Medicina Subaquática e Hiperbárica, Azinhaga dos Ulmeiros, Lisbon, Portugal
| | - Pedro Modas Daniel
- Centro de Medicina Subaquática e Hiperbárica, Azinhaga dos Ulmeiros, Lisbon, Portugal
| | - Guilherme Silva Bernardo
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Centro de Medicina Subaquática e Hiperbárica, Azinhaga dos Ulmeiros, Lisbon, Portugal
- Urology Department, Hospital Professor Doutor Fernando Fonseca, Amadora, Portugal
| | - Carla Amaro
- Centro de Medicina Subaquática e Hiperbárica, Azinhaga dos Ulmeiros, Lisbon, Portugal
- Otorhinolaryngology Department, CUF Descobertas, Lisbon, Portugal
| |
Collapse
|
5
|
Xue T, Ding JS, Li B, Cao DM, Chen G. A narrative review of adjuvant therapy for glioma: hyperbaric oxygen therapy. Med Gas Res 2021; 11:155-157. [PMID: 34213498 PMCID: PMC8374463 DOI: 10.4103/2045-9912.318861] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/23/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
Glioma is a kind of common malignant tumor in neurosurgery and has a high mortality and morbidity rate, which poses a serious threat to the health of people all over the world. Surgery is the preferred treatment for patients with glioma, radiotherapy or chemotherapy can be used after surgery. Although there are clear therapeutic protocols, the efficacy and safety of these protocols are clinically proven, a large number of patients are still dissatisfied with the treatment and the health of the patient remains unsatisfactory. Therefore, it is crucial to look for other treatments or complementary treatments. In the modern medical treatment, hyperbaric oxygen (HBO) therapy is widely used in various kinds of pathological state of adjuvant therapy, and existing studies confirm the efficacy of HBO therapy in combination with surgery, radiotherapy, chemotherapy, and photodynamic therapy. Studies have shown that HBO can inhibit the growth of tumor tissue as an adjunctive therapy. This provides novel insights into the clinical treatment of glioma patients. Although HBO is not licensed for use in cancer treatment, as a kind of adjuvant therapy, the treatment effect of HBO can be accepted by the patients and its cost lower, which could be regarded as an ideal safe treatment.
Collapse
Affiliation(s)
- Tao Xue
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jia-Sheng Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Bing Li
- Department of Neurosurgery, Yancheng City No. 1 People’s Hospital, The Fourth Affiliated Hospital of Nantong University, Yancheng, Jiangsu Province, China
| | - De-Mao Cao
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
6
|
Abstract
Gliomas are common brain mass with a high mortality rate. Patients with gliomas have a severely bad outcome, with an average survive duration less 15 months because of high recurrent rate and being resistant to radio-therapy and chemistry drugs therapy. Hyperbaric oxygen is extensively taken as an adjuvant treatment for various disease conditions. To know the characteristics of hyperbaric oxygen as a remedy for gliomas, we find that, in general, hyperbaric oxygen shows an obviously positive effect on the treatment of gliomas, and it can also relieve the complications caused by postoperative radiotherapy and chemotherapy of gliomas. Whereas, several researches have shown that hyperbaric oxygen promotes glioma progression.
Collapse
Affiliation(s)
- Wen-Jie Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jia-Sheng Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Qing Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiang Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
7
|
Wang P, Gong S, Pan J, Wang J, Zou D, Xiong S, Zhao L, Yan Q, Deng Y, Wu N, Liao B. Hyperbaric oxygen promotes not only glioblastoma proliferation but also chemosensitization by inhibiting HIF1α/HIF2α-Sox2. Cell Death Discov 2021; 7:103. [PMID: 33986256 PMCID: PMC8119469 DOI: 10.1038/s41420-021-00486-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/20/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
There exists a consensus that combining hyperbaric oxygen (HBO) and chemotherapy promotes chemotherapy sensitivity in GBM cells. However, few studies have explored the mechanism involved. HIF1α and HIF2α are the two main molecules that contribute to GBM malignant progression by inhibiting apoptosis or maintaining stemness under hypoxic conditions. Moreover, Sox2, a marker of stemness, also contributes to GBM malignant progression through stemness maintenance or cell cycle arrest. Briefly, HIF1α, HIF2α and Sox2 are highly expressed under hypoxia and contribute to GBM growth and chemoresistance. However, after exposure to HBO for GBM, whether the expression of the above factors is decreased, resulting in chemosensitization, remains unknown. Therefore, we performed a series of studies and determined that the expression of HIF1α, HIF2α and Sox2 was decreased after HBO and that HBO promoted GBM cell proliferation through cell cycle progression, albeit with a decrease in stemness, thus contributing to chemosensitization via the inhibition of HIF1α/HIF2α-Sox2.
Collapse
Affiliation(s)
- Pan Wang
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 401147, China.,Chongqing Medical University, Chongqing, China
| | - Sheng Gong
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 401147, China
| | - Jinyu Pan
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 401147, China
| | - Junwei Wang
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 401147, China
| | - Dewei Zou
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 401147, China
| | - Shuanglong Xiong
- Department of Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Lu Zhao
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 401147, China
| | - Qian Yan
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 401147, China
| | - Yangming Deng
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 401147, China
| | - Nan Wu
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 401147, China.
| | - Bin Liao
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 401147, China.
| |
Collapse
|
8
|
Ortiz R, Perazzoli G, Cabeza L, Jiménez-Luna C, Luque R, Prados J, Melguizo C. Temozolomide: An Updated Overview of Resistance Mechanisms, Nanotechnology Advances and Clinical Applications. Curr Neuropharmacol 2021; 19:513-537. [PMID: 32589560 PMCID: PMC8206461 DOI: 10.2174/1570159x18666200626204005] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 12/22/2022] Open
Abstract
Temozolomide (TMZ), an oral alkylating prodrug which delivers a methyl group to purine bases of DNA (O6-guanine; N7-guanine and N3-adenine), is frequently used together with radiotherapy as part of the first-line treatment of high-grade gliomas. The main advantages are its high oral bioavailability (almost 100% although the concentration found in the cerebrospinal fluid was approximately 20% of the plasma concentration of TMZ), its lipophilic properties, and small size that confer the ability to cross the blood-brain barrier. Furthermore, this agent has demonstrated activity not only in brain tumors but also in a variety of solid tumors. However, conventional therapy using surgery, radiation, and TMZ in glioblastoma results in a median patient survival of 14.6 months. Treatment failure has been associated with tumor drug resistance. This phenomenon has been linked to the expression of O6-methylguanine-DNA methyltransferase, but the mismatch repair system and the presence of cancer stem-like cells in tumors have also been related to TMZ resistance. The understanding of these mechanisms is essential for the development of new therapeutic strategies in the clinical use of TMZ, including the use of nanomaterial delivery systems and the association with other chemotherapy agents. The aim of this review is to summarize the resistance mechanisms of TMZ and the current advances to improve its clinical use.
Collapse
Affiliation(s)
- Raúl Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Centre (CIBM), University of Granada, Spain
| | | | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Centre (CIBM), University of Granada, Spain
| | - Cristina Jiménez-Luna
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges 1066, Switzerland
| | - Raquel Luque
- Medical Oncology Service, Virgen de las Nieves Hospital, Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Centre (CIBM), University of Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Centre (CIBM), University of Granada, Spain
| |
Collapse
|
9
|
Chelliah SS, Paul EAL, Kamarudin MNA, Parhar I. Challenges and Perspectives of Standard Therapy and Drug Development in High-Grade Gliomas. Molecules 2021; 26:1169. [PMID: 33671796 PMCID: PMC7927069 DOI: 10.3390/molecules26041169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/18/2022] Open
Abstract
Despite their low incidence rate globally, high-grade gliomas (HGG) remain a fatal primary brain tumor. The recommended therapy often is incapable of resecting the tumor entirely and exclusively targeting the tumor leads to tumor recurrence and dismal prognosis. Additionally, many HGG patients are not well suited for standard therapy and instead, subjected to a palliative approach. HGG tumors are highly infiltrative and the complex tumor microenvironment as well as high tumor heterogeneity often poses the main challenges towards the standard treatment. Therefore, a one-fit-approach may not be suitable for HGG management. Thus, a multimodal approach of standard therapy with immunotherapy, nanomedicine, repurposing of older drugs, use of phytochemicals, and precision medicine may be more advantageous than a single treatment model. This multimodal approach considers the environmental and genetic factors which could affect the patient's response to therapy, thus improving their outcome. This review discusses the current views and advances in potential HGG therapeutic approaches and, aims to bridge the existing knowledge gap that will assist in overcoming challenges in HGG.
Collapse
Affiliation(s)
- Shalini Sundramurthi Chelliah
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Ervin Ashley Lourdes Paul
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
| | - Muhamad Noor Alfarizal Kamarudin
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
| | - Ishwar Parhar
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
| |
Collapse
|
10
|
Wang X, Li S, Liu X, Wu X, Ye N, Yang X, Li Z. Boosting Nanomedicine Efficacy with Hyperbaric Oxygen Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:77-95. [PMID: 33543456 DOI: 10.1007/978-3-030-58174-9_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanomedicine has been a hot topic in the field of tumor therapy in the past few decades. Because of the enhanced permeability and retention effect (EPR effect), nanomedicine can passively yet selectively accumulate at tumor tissues. As a result, it can improve drug concentration in tumor tissues and reduce drug distribution in normal tissues, thereby contributing to enhanced antitumor effect and reduced adverse effects. However, the therapeutic efficacy of anticancer nanomedicine is not satisfactory in clinical settings. Therefore, how to improve the clinical therapeutic effect of nanomedicine has become an urgent problem. The grand challenges of nanomedicine lie in how to overcome various pathophysiological barriers and simultaneously kill cancer cells effectively in hypoxic tumor microenvironment (TME). To this end, the development of novel stimuli-responsive nanomedicine has become a new research hotspot. While a great deal of progress has been made in this direction and preclinical results report many different kinds of promising multifunctional smart nanomedicine, the design of these intelligent nanomedicines is often too complicated, the requirements for the preparation processes are strict, the cost is high, and the clinical translation is difficult. Thus, it is more practical to find solutions to promote the therapeutic efficacy of commercialized nanomedicines, for example, Doxil®, Oncaspar®, DaunoXome®, Abraxane®, to name a few. Increasing attention has been paid to the combination of modern advanced medical technology and nanomedicine for the treatment of various malignancies. Recently, we found that hyperbaric oxygen (HBO) therapy could enhance Doxil® antitumor efficacy. Inspired by this study, we further carried out researches on the combination of HBO therapy with other nanomedicines for various cancer therapies, and revealed that HBO therapy could significantly boost antitumor efficacy of nanomedicine-mediated photodynamic therapy and photothermal therapy in different kinds of tumors, including hepatocellular carcinoma, breast cancer, and gliomas. Our results implicate that HBO therapy might be a universal strategy to boost therapeutic efficacy of nanomedicine against hypoxic solid malignancies.
Collapse
Affiliation(s)
- Xiaoxian Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Si Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xian Wu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ningbing Ye
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Tan J, Duan X, Zhang F, Ban X, Mao J, Cao M, Han S, Shuai X, Shen J. Theranostic Nanomedicine for Synergistic Chemodynamic Therapy and Chemotherapy of Orthotopic Glioma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2003036. [PMID: 33344142 PMCID: PMC7740078 DOI: 10.1002/advs.202003036] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Indexed: 05/17/2023]
Abstract
Glioma is a common primary brain malignancy with a poor prognosis. Chemotherapy is the first-line treatment for brain tumors but low efficiency of drugs in crossing the blood-brain barrier (BBB) and drug resistance related to tumor hypoxia thwart its efficacy. Herein, a theranostic nanodrug (iRPPA@TMZ/MnO) is developed by incorporating oleic acid-modified manganese oxide (MnO) and temozolomide (TMZ) into a polyethylene glycol-poly(2-(diisopropylamino)ethyl methacrylate-based polymeric micelle containing internalizing arginine-glycine-aspartic acid (iRGD). The presence of iRGD provides the nanodrug with a high capacity of crossing the BBB and penetrating the tumor tissue. After accumulation in glioma, the nanodrug responds to the tumor microenvironment to simultaneously release TMZ, Mn2+, and O2. The released TMZ induces tumor cell apoptosis and the released Mn2+ causes intracellular oxidative stress that kill tumor cells via a Fenton-like reaction. The O2 produced in situ alleviates tumor hypoxia and enhances the chemotherapy/chemodynamic therapeutic effects against glioma. The Mn2+ can also serve as a magnetic resonance imaging (MRI) contrast agent for tumor imaging during therapy. The study demonstrates the great potential of this multifunctional nanodrug for MRI-visible therapy of brain glioma.
Collapse
Affiliation(s)
- Junyi Tan
- Department of RadiologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- PCFM Lab of Ministry of EducationSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Xiaohui Duan
- Department of RadiologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Fang Zhang
- Department of RadiologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Xiaohua Ban
- Department of RadiologySun Yat‐sen University Cancer CentreSun Yat‐sen UniversityGuangzhou510060China
| | - Jiaji Mao
- Department of RadiologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Minghui Cao
- Department of RadiologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Shisong Han
- PCFM Lab of Ministry of EducationSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Xintao Shuai
- Department of RadiologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- PCFM Lab of Ministry of EducationSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Jun Shen
- Department of RadiologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| |
Collapse
|
12
|
Mild thermotherapy and hyperbaric oxygen enhance sensitivity of TMZ/PSi nanoparticles via decreasing the stemness in glioma. J Nanobiotechnology 2019; 17:47. [PMID: 30935403 PMCID: PMC6442425 DOI: 10.1186/s12951-019-0483-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/27/2019] [Indexed: 12/14/2022] Open
Abstract
Background Glioma is a common brain tumor with a high mortality rate. A small population of cells expressing stem-like cell markers in glioma contributes to drug resistance and tumor recurrence. Methods Porous silicon nanoparticles (PSi NPs) as photothermal therapy (PTT) agents loaded with TMZ (TMZ/PSi NPs), was combined with hyperbaric oxygen (HBO) therapy in vitro and in vivo. To further investigate underlying mechanism, we detected the expression of stem-like cell markers and hypoxia related molecules in vitro and in vivo after treatment of TMZ/PSi NPs in combination with PTT and HBO. Results NCH-421K and C6 cells were more sensitive to the combination treatment. Moreover, the expression of stem-like cell markers and hypoxia related molecules were decreased after combination treatment. The in vivo results were in line with in vitro. The combination treatment presents significant antitumor effects in mice bearing C6 tumor compared with the treatment of TMZ, PTT or TMZ/PSi NPs only. Conclusion These results suggested the TMZ/PSi NPs combined with HBO and PTT could be a potential therapeutic strategy for glioma. Electronic supplementary material The online version of this article (10.1186/s12951-019-0483-1) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Giakoumettis D, Pourzitaki C, Vavilis T, Tsingotjidou A, Kyriakoudi A, Tsimidou M, Boziki M, Sioga A, Foroglou N, Kritis A. Crocus sativus L. Causes a Non Apoptotic Calpain Dependent Death in C6 Rat Glioma Cells, Exhibiting a Synergistic Effect with Temozolomide. Nutr Cancer 2018; 71:491-507. [PMID: 30273051 DOI: 10.1080/01635581.2018.1506493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/11/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
Crocus sativus L., a dietary herb, has been used for various diseases including cancer. This is an in vitro study investigating the antineoplastic effect of the extract of the plant against C6 glioma rat cell line. The mechanism of cellular death and the synergistic effect of the extract with the alkylating agent temozolomide (TMZ) were investigated. Cellular viability was examined in various concentrations of the extract alone or in combination with TMZ. Apoptosis was determined with flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and autophagy by western blotting of the light chain 3 (LC3)-II. Cellular viability was reduced after exposure to the extract with half maximal inhibition concentration at 3 mg/ml. Flow cytometry and TUNEL assay suggested that the extract does not induce apoptosis. Moreover, their combination increased the ratio dead/apoptotic cells 10-fold (P < 0.001). LC3-II protein levels reduced after Crocus extract while this effect was reversed when the calpain inhibitor MDL28170 was added, suggesting a calpain-dependent death possibly through autophagy. We concluded that the extract of Crocus increases dead cell number after 48 h of exposure. Our results suggest that the cell undergoes calpain-dependent programmed cell death while co-exposure to Crocus extract and TMZ enhances the antineoplastic effect of the latter.
Collapse
Affiliation(s)
- Dimitrios Giakoumettis
- a Clinic of Neurosurgery, ΑHΕPΑ University Hospital, Faculty of Medicine, School of Health Sciences , Aristotle University of Thessaloniki , Greece , Thessaloniki , Greece
| | - Chryssa Pourzitaki
- b Laboratory of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences , Aristotle University of Thessaloniki , Greece , Thessaloniki , Greece
| | - Theofanis Vavilis
- c Laboratory of Physiology, Faculty of Medicine, School of Health Sciences , Aristotle University of Thessaloniki , Greece , Thessaloniki , Greece
- d cGMP Regenerative Medicine facility, Department of Physiology and Pharmacology, Faculty of Medicine, School of Health Sciences , Aristotle University of Thessaloniki , Greece , Thessaloniki , Greece
| | - Anastasia Tsingotjidou
- e Laboratory of Histology and Anatomy, Faculty of Health Science , Veterinary school Aristotle university of Thessaloniki , Thessaloniki , Greece
| | - Anastasia Kyriakoudi
- f Laboratory of Food Chemistry and Technology, School of Chemistry , Aristotle university of Thessaloniki , Thessaloniki , Greece
| | - Maria Tsimidou
- f Laboratory of Food Chemistry and Technology, School of Chemistry , Aristotle university of Thessaloniki , Thessaloniki , Greece
| | - Marina Boziki
- g 2nd Neurological Clinic, University Hospital, Faculty of Medicine, School of Health Sciences , Aristotle University of Thessaloniki , Greece , Thessaloniki , Greece
| | - Antonia Sioga
- h Laboratory of Histology and Embryology, Faculty of Medicine, School of Health Sciences , Aristotle University of Thessaloniki , Greece , Thessaloniki , Greece
| | - Nikolaos Foroglou
- a Clinic of Neurosurgery, ΑHΕPΑ University Hospital, Faculty of Medicine, School of Health Sciences , Aristotle University of Thessaloniki , Greece , Thessaloniki , Greece
| | - Aristeidis Kritis
- c Laboratory of Physiology, Faculty of Medicine, School of Health Sciences , Aristotle University of Thessaloniki , Greece , Thessaloniki , Greece
- d cGMP Regenerative Medicine facility, Department of Physiology and Pharmacology, Faculty of Medicine, School of Health Sciences , Aristotle University of Thessaloniki , Greece , Thessaloniki , Greece
| |
Collapse
|