1
|
França Dias M, Ken Kawassaki R, Amaral de Melo L, Araki K, Raphael Guimarães R, Ligorio Fialho S. Optimizing Retinal Imaging: Evaluation of ultrasmall TiO 2 nanoparticle- fluorescein conjugates for improved Fundus Fluorescein Angiography. Methods 2025; 233:30-41. [PMID: 39566751 DOI: 10.1016/j.ymeth.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024] Open
Abstract
Fundus Fluorescein Angiography (FFA) has been extensively used for the identification, management, and diagnosis of various retinal and choroidal diseases, such as age-related macular degeneration, diabetic retinopathy, retinopathy of prematurity, among others. This exam enables clinicians to evaluate retinal morphology and the pathophysiology of retinal vasculature. However, adverse events, including from mild to severe reactions to sodium fluorescein, have been reported. Titanium dioxide nanoparticles (NPTiO2) have shown significant potential in numerous biological applications. Coating or conjugating these nanoparticles with small molecules can enhance their stability, photochemical properties, and biocompatibility, as well as increase the hydrophilicity of the nanoparticles, making them more suitable for biomedical applications. This work demonstrates the potential use of ultrasmall titanium dioxide nanoparticles conjugated with sodium fluorescein to improve the quality of angiography exams. The strategy of conjugating fluorescein with NPTiO2 successfully enhanced the fluorescence photostability of the contrast agent and increased its retention time in the retina. Preliminary in vivo and in vitro safety tests suggest that these nanoparticles are safe for the intended application demonstrating low tendency to hemolysis, and no significant changes in the retina thickness or in the electroretinography a-wave and b-wave amplitudes. Overall, the conjugation of fluorescein to NPTiO2 has produced a nanomaterial with favorable properties for use as an innovative contrast agent in FFA examinations. By providing a clear description of our methodology of analysis, we also aim to offer better perspectives and reproducible conditions for future research.
Collapse
Affiliation(s)
- Marina França Dias
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, R. Conde Pereira Carneiro 80, Gameleira, 30510-010 Belo Horizonte, MG, Brazil
| | - Rodrigo Ken Kawassaki
- Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, Butantã, 05508-000 São Paulo, SP, Brazil
| | - Lutiana Amaral de Melo
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, R. Conde Pereira Carneiro 80, Gameleira, 30510-010 Belo Horizonte, MG, Brazil
| | - Koiti Araki
- Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, Butantã, 05508-000 São Paulo, SP, Brazil
| | - Robson Raphael Guimarães
- Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, Butantã, 05508-000 São Paulo, SP, Brazil
| | - Sílvia Ligorio Fialho
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, R. Conde Pereira Carneiro 80, Gameleira, 30510-010 Belo Horizonte, MG, Brazil.
| |
Collapse
|
2
|
Kąpa M, Koryciarz I, Kustosik N, Jurowski P, Pniakowska Z. Modern Approach to Diabetic Retinopathy Diagnostics. Diagnostics (Basel) 2024; 14:1846. [PMID: 39272631 PMCID: PMC11394437 DOI: 10.3390/diagnostics14171846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 09/15/2024] Open
Abstract
This article reviews innovative diagnostic approaches for diabetic retinopathy as the prevalence of diabetes mellitus and its complications continue to escalate. Novel techniques focus on early disease detection. Technological innovations, such as teleophthalmology, smartphone-based photography, artificial intelligence with deep learning, or widefield photography, can enhance diagnostic accuracy and accelerate the treatment. The review highlights teleophthalmology and handheld photography as promising solutions for remote eye care. These methods revolutionize diabetic retinopathy screening, offering cost-effective and accessible solutions. However, the use of these techniques may be limited by insurance coverage in certain world regions. Ultra-widefield photography offers a comprehensive view of up to 80.0% of the retina in a single image, compared to the 34.0% coverage of the traditional seven-field imaging protocol. It allows retinal imaging without pupil dilation, especially for individuals with compromised mydriasis. However, they also have drawbacks, including high costs, artifacts from eyelashes, eyelid margins, and peripheral distortion. Recent advances in artificial intelligence and machine learning, particularly through convolutional neural networks, are revolutionizing diabetic retinopathy diagnostics, enhancing screening efficiency and accuracy. FDA-approved Artificial Intelligence-powered devices such as LumineticsCore™, EyeArt, and AEYE Diagnostic Screening demonstrate high sensitivity and specificity in diabetic retinopathy detection. While Artificial Intelligence offers the potential to improve patient outcomes and reduce treatment costs, challenges such as dataset biases, high initial costs, and cybersecurity risks must be considered to ensure safety and efficiency. Nanotechnology advancements further enhance diagnosis, offering highly branched polyethyleneimine particles with fluorescein sodium (PEI-NHAc-FS) for better fluorescein angiography or vanadium oxide-based metabolic fingerprinting for early detection.
Collapse
Affiliation(s)
- Maria Kąpa
- Department of Ophthalmology and Vision Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland
| | - Iga Koryciarz
- Department of Ophthalmology and Vision Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland
| | - Natalia Kustosik
- Department of Ophthalmology and Vision Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland
| | - Piotr Jurowski
- Department of Ophthalmology and Vision Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland
| | - Zofia Pniakowska
- Department of Ophthalmology and Vision Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland
- Optegra Eye Clinic, 90-127 Lodz, Poland
| |
Collapse
|
3
|
The preparation of the polyamide 6/fluorescein composite by in situ polymerization method and its properties. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
4
|
Zingale E, Romeo A, Rizzo S, Cimino C, Bonaccorso A, Carbone C, Musumeci T, Pignatello R. Fluorescent Nanosystems for Drug Tracking and Theranostics: Recent Applications in the Ocular Field. Pharmaceutics 2022; 14:pharmaceutics14050955. [PMID: 35631540 PMCID: PMC9147643 DOI: 10.3390/pharmaceutics14050955] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
The greatest challenge associated with topical drug delivery for the treatment of diseases affecting the posterior segment of the eye is to overcome the poor bioavailability of the carried molecules. Nanomedicine offers the possibility to overcome obstacles related to physiological mechanisms and ocular barriers by exploiting different ocular routes. Functionalization of nanosystems by fluorescent probes could be a useful strategy to understand the pathway taken by nanocarriers into the ocular globe and to improve the desired targeting accuracy. The application of fluorescence to decorate nanocarrier surfaces or the encapsulation of fluorophore molecules makes the nanosystems a light probe useful in the landscape of diagnostics and theranostics. In this review, a state of the art on ocular routes of administration is reported, with a focus on pathways undertaken after topical application. Numerous studies are reported in the first section, confirming that the use of fluorescent within nanoparticles is already spread for tracking and biodistribution studies. The first section presents fluorescent molecules used for tracking nanosystems’ cellular internalization and permeation of ocular tissues; discussions on the classification of nanosystems according to their nature (lipid-based, polymer-based, metallic-based and protein-based) follows. The following sections are dedicated to diagnostic and theranostic uses, respectively, which represent an innovation in the ocular field obtained by combining dual goals in a single administration system. For its great potential, this application of fluorescent nanoparticles would experience a great development in the near future. Finally, a brief overview is dedicated to the use of fluorescent markers in clinical trials and the market in the ocular field.
Collapse
Affiliation(s)
- Elide Zingale
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Alessia Romeo
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Salvatore Rizzo
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Cinzia Cimino
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Angela Bonaccorso
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Claudia Carbone
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Teresa Musumeci
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Rosario Pignatello
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
- Correspondence:
| |
Collapse
|
5
|
Sun YC, Hung KF, Li TY, Chang YA, Yeh PT, Hu FR. Transmembrane Mucin 1 Blocks Fluorescein Ingress to Corneal Epithelium. Invest Ophthalmol Vis Sci 2022; 63:31. [PMID: 35212722 PMCID: PMC8883176 DOI: 10.1167/iovs.63.2.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose To determine the role of transmembrane mucins in blocking fluorescein ingress to the corneal epithelium and its deficiency in contributing to corneal fluorescein punctate staining. Methods A dry eye model was established by extirpating lacrimal and Harderian glands in rabbits to correlate the expression of mucins with fluorescein-stained areas on the corneal button using immunofluorescence. Expression of transmembrane mucins was promoted in human corneal epithelial cells (HCECs) by culturing with the mucin-promoting medium (MPM) or diquafosol treatment. Conversely, the expression of mucins was downregulated by knockdown with short hairpin RNA. The role of mucin1 extracellular domain in fluorescein ingress was further verified by overexpression of N-terminally truncated mucin1 in HCECs. Results In the rabbit dry eye model, the expression level of mucin1 was significantly decreased in superficial corneal epithelial cells where fluorescein punctate staining was observed. Upregulation of mucin1 and mucin16 in HCECs promoted by MPM or by diquafosol treatment impeded intracellular fluorescein ingress. Downregulation of mucin1 and mucin16 enhanced fluorescence ingress in HCECs after fluorescein staining. Overexpression of truncated mucin1 did not alter the fluorescein intensity of fluorescein-stained HCECs, supporting the notion that the ability of mucin1 to block fluorescein ingress was primarily mediated by its extracellular domain. Minimal inherent expression of mucin16 in the rabbit cornea limited the validation of its role in blocking fluorescein ingress in vivo. Conclusion Transmembrane mucin1 blocks fluorescein ingress in the corneal epithelium, explaining how fluorescein staining is positive when the level of transmembrane mucins is disturbed in dry eyes.
Collapse
Affiliation(s)
- Yi-Chen Sun
- Department of Ophthalmology, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan.,College of Medicine, Tzu-Chi University, Hualien, Taiwan
| | - Kai-Feng Hung
- Department of Medical Research, Division of Translational Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.,Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Tzu-Yun Li
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-An Chang
- Graduate Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Ting Yeh
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fung-Rong Hu
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Nanodiagnostics and Nanotherapeutics for age-related macular degeneration. J Control Release 2021; 329:1262-1282. [DOI: 10.1016/j.jconrel.2020.10.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 12/15/2022]
|