1
|
Loret T, de Luna LAV, Lucherelli MA, Fordham A, Lozano N, Bianco A, Kostarelos K, Bussy C. Lung Persistence, Biodegradation, and Elimination of Graphene-Based Materials are Predominantly Size-Dependent and Mediated by Alveolar Phagocytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301201. [PMID: 37264768 PMCID: PMC11475755 DOI: 10.1002/smll.202301201] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/03/2023] [Indexed: 06/03/2023]
Abstract
Graphene-based materials (GBMs) have promising applications in various sectors, including pulmonary nanomedicine. Nevertheless, the influence of GBM physicochemical characteristics on their fate and impact in lung has not been thoroughly addressed. To fill this gap, the biological response, distribution, and bio-persistence of four different GBMs in mouse lungs up to 28 days after single oropharyngeal aspiration are investigated. None of the GBMs, varying in size (large versus small) and carbon to oxygen ratio as well as thickness (few-layers graphene (FLG) versus thin graphene oxide (GO)), induce a strong pulmonary immune response. However, recruited neutrophils internalize nanosheets better and degrade GBMs faster than macrophages, revealing their crucial role in the elimination of small GBMs. In contrast, large GO sheets induce more damages due to a hindered degradation and long-term persistence in macrophages. Overall, small dimensions appear to be a leading feature in the design of safe GBM pulmonary nanovectors due to an enhanced degradation in phagocytes and a faster clearance from the lungs for small GBMs. Thickness also plays an important role, since decreased material loading in alveolar phagocytes and faster elimination are found for FLGs compared to thinner GOs. These results are important for designing safer-by-design GBMs for biomedical application.
Collapse
Affiliation(s)
- Thomas Loret
- Nanomedicine Lab 2.0School of Biological SciencesFaculty of BiologyMedicine and HealthThe University of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
- National Graphene InstituteThe University of ManchesterManchesterM13 9PLUK
- Lydia Becker Institute of Immunology and InflammationFaculty of BiologyMedicine and HealthThe University of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
| | - Luis Augusto Visani de Luna
- Nanomedicine Lab 2.0School of Biological SciencesFaculty of BiologyMedicine and HealthThe University of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
- National Graphene InstituteThe University of ManchesterManchesterM13 9PLUK
- Lydia Becker Institute of Immunology and InflammationFaculty of BiologyMedicine and HealthThe University of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
| | - Matteo Andrea Lucherelli
- CNRSImmunologyImmunopathology and Therapeutic ChemistryUPR 3572University of StrasbourgISISStrasbourg67000France
| | - Alexander Fordham
- Nanomedicine Lab 2.0School of Biological SciencesFaculty of BiologyMedicine and HealthThe University of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
- National Graphene InstituteThe University of ManchesterManchesterM13 9PLUK
- Lydia Becker Institute of Immunology and InflammationFaculty of BiologyMedicine and HealthThe University of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
| | - Neus Lozano
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UABBellaterraBarcelona08193Spain
| | - Alberto Bianco
- CNRSImmunologyImmunopathology and Therapeutic ChemistryUPR 3572University of StrasbourgISISStrasbourg67000France
| | - Kostas Kostarelos
- Nanomedicine Lab 2.0School of Biological SciencesFaculty of BiologyMedicine and HealthThe University of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
- National Graphene InstituteThe University of ManchesterManchesterM13 9PLUK
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UABBellaterraBarcelona08193Spain
| | - Cyrill Bussy
- Nanomedicine Lab 2.0School of Biological SciencesFaculty of BiologyMedicine and HealthThe University of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
- National Graphene InstituteThe University of ManchesterManchesterM13 9PLUK
- Lydia Becker Institute of Immunology and InflammationFaculty of BiologyMedicine and HealthThe University of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
| |
Collapse
|
2
|
Trousil J, Dal NJK, Fenaroli F, Schlachet I, Kubíčková P, Janoušková O, Pavlova E, Škorič M, Trejbalová K, Pavliš O, Sosnik A. Antibiotic-Loaded Amphiphilic Chitosan Nanoparticles Target Macrophages and Kill an Intracellular Pathogen. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201853. [PMID: 35691939 DOI: 10.1002/smll.202201853] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/19/2022] [Indexed: 06/15/2023]
Abstract
In this work, levofloxacin (LVX), a third-generation fluoroquinolone antibiotic, is encapsulated within amphiphilic polymeric nanoparticles of a chitosan-g-poly(methyl methacrylate) produced by self-assembly and physically stabilized by ionotropic crosslinking with sodium tripolyphosphate. Non-crosslinked nanoparticles display a size of 29 nm and a zeta-potential of +36 mV, while the crosslinked counterparts display 45 nm and +24 mV, respectively. The cell compatibility, uptake, and intracellular trafficking are characterized in the murine alveolar macrophage cell line MH-S and the human bronchial epithelial cell line BEAS-2B in vitro. Internalization events are detected after 10 min and the uptake is inhibited by several endocytosis inhibitors, indicating the involvement of complex endocytic pathways. In addition, the nanoparticles are detected in the lysosomal compartment. Then, the antibacterial efficacy of LVX-loaded nanoformulations (50% w/w drug content) is assessed in MH-S and BEAS-2B cells infected with Staphylococcus aureus and the bacterial burden is decreased by 49% and 46%, respectively. In contrast, free LVX leads to a decrease of 8% and 5%, respectively, in the same infected cell lines. Finally, intravenous injection to a zebrafish larval model shows that the nanoparticles accumulate in macrophages and endothelium and demonstrate the promise of these amphiphilic nanoparticles to target intracellular infections.
Collapse
Affiliation(s)
- Jiří Trousil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, 162 00, Czech Republic
| | | | | | - Inbar Schlachet
- Laboratory of Pharmaceutical Nanomaterials Science, Faculty of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Pavla Kubíčková
- Military Health Institute, Military Medical Agency, Prague, 160 00, Czech Republic
| | - Olga Janoušková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, 162 00, Czech Republic
- Department of Biology, Faculty of Science, University of J. E. Purkyně, Ústí nad Labem, 400 96, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, 162 00, Czech Republic
| | - Miša Škorič
- Department of Pathological Morphology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, 612 42, Czech Republic
| | - Kateřina Trejbalová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Oto Pavliš
- Military Health Institute, Military Medical Agency, Prague, 160 00, Czech Republic
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Faculty of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|