1
|
Pallathadka H, Jabir M, Rasool KH, Hanumanthaiah M, Sharma N, Pramanik A, Rab SO, Jawad SF, Oghenemaro EF, Mustafa YF. siRNA-based therapy for overcoming drug resistance in human solid tumours; molecular and immunological approaches. Hum Immunol 2025; 86:111221. [PMID: 39700968 DOI: 10.1016/j.humimm.2024.111221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
RNA interference (RNAi) is a primordial biological process that protects against external intrusion. SiRNA has the potential to selectively silence disease-related genes in a sequence-specific way, thus offering a promising therapeutic approach. The efficacy of siRNA-based therapies in cancer treatment has gained significant recognition due to multiple studies demonstrating its ability to effectively suppress cancer cells' growth and multiplication. Moreover, siRNA-based medicines have shown considerable promise in enhancing the sensitivity of cancer cells to chemotherapy and other treatment methods by suppressing genes that play a role in the development of drug resistance. Exploring and identifying functional genes linked to cancer cell characteristics and drug resistance is crucial for developing effective siRNAs for cancer treatment and advancing targeted and personalized therapeutics. Targeting and silencing genes in charge of resistance mechanisms, such as those involved in drug efflux, cell survival, or DNA repair, is possible with siRNA therapy in the context of drug resistance, especially cancer. Through inhibiting these genes, siRNA therapy can prevent resistance and restore the efficacy of traditional medications. This review addresses the potential of siRNAs in addressing drug resistance in human tumours, opening up new possibilities in cancer therapy. This review article offers a non-systematic summary of how different siRNA types contribute to cancer cells' treatment resistance. Using pertinent keywords, sources were chosen from reliable databases, including PubMed, Scopus, and Google Scholar. The review covered essential papers in this area and those that mainly addressed the function of siRNA in drug resistance. The articles examined in connection with the title of this review were primarily published from 2020 onward and are based on in vitro studies. Furthermore, this article examines the potential barriers and prospective perspectives of siRNA therapies.
Collapse
Affiliation(s)
| | - Majid Jabir
- Department of Applied Sciences, University of Technology, Iraq
| | | | - Malathi Hanumanthaiah
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Neha Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri - 140307, Mohali, Punjab, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University Dehradun, Uttarakhand, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sabrean Farhan Jawad
- Department of Biochemistry, College of Science, Al-Mustaqbal University, 51001 Babil, Iraq.
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Delta State University, Faculty of Pharmacy, PMB 1 Abraka, Delta State, Nigeria
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
2
|
siRNA and targeted delivery systems in breast cancer therapy. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 25:1167-1188. [PMID: 36562927 DOI: 10.1007/s12094-022-03043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Recently, nucleic acid drugs have been considered as promising candidates in treatment of various diseases, especially cancer. Because of developing resistance to conventional chemotherapy, use of genetic tools in cancer therapy appears inevitable. siRNA is a RNAi tool with capacity of suppressing target gene. Owing to overexpression of oncogenic factors in cancer, siRNA can be used for suppressing those pathways. This review emphasizes the function of siRNA in treatment of breast tumor. The anti-apoptotic-related genes including Bcl-2, Bcl-xL and survivin can be down-regulated by siRNA in triggering cell death in breast cancer. STAT3, STAT8, Notch1, E2F3 and NF-κB are among the factors with overexpression in breast cancer that their silencing by siRNA paves the way for impairing tumor proliferation and invasion. The oncogenic mechanisms in drug resistance development in breast tumor such as lncRNAs can be suppressed by siRNA. Furthermore, siRNA reducing P-gp activity can increase drug internalization in tumor cells. Because of siRNA degradation at bloodstream and low accumulation at tumor site, nanoplatforms have been employed for siRNA delivery to suppress breast tumor progression via improving siRNA efficacy in gene silencing. Development of biocompatible and efficient nanostructures for siRNA delivery can make milestone progress in alleviation of breast cancer patients.
Collapse
|
3
|
Sargazi S, Arshad R, Ghamari R, Rahdar A, Bakhshi A, Karkan SF, Ajalli N, Bilal M, Díez-Pascual AM. siRNA-based nanotherapeutics as emerging modalities for immune-mediated diseases: A preliminary review. Cell Biol Int 2022; 46:1320-1344. [PMID: 35830711 PMCID: PMC9543380 DOI: 10.1002/cbin.11841] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022]
Abstract
Immune‐mediated diseases (IMDs) are chronic conditions that have an immune‐mediated etiology. Clinically, these diseases appear to be unrelated, but pathogenic pathways have been shown to connect them. While inflammation is a common occurrence in the body, it may either stimulate a favorable immune response to protect against harmful signals or cause illness by damaging cells and tissues. Nanomedicine has tremendous promise for regulating inflammation and treating IMIDs. Various nanoparticles coated with nanotherapeutics have been recently fabricated for effective targeted delivery to inflammatory tissues. RNA interference (RNAi) offers a tremendous genetic approach, particularly if traditional treatments are ineffective against IMDs. In cells, several signaling pathways can be suppressed by using RNAi, which blocks the expression of particular messenger RNAs. Using this molecular approach, the undesirable effects of anti‐inflammatory medications can be reduced. Still, there are many problems with using short‐interfering RNAs (siRNAs) to treat IMDs, including poor localization of the siRNAs in target tissues, unstable gene expression, and quick removal from the blood. Nanotherapeutics have been widely used in designing siRNA‐based carriers because of the restricted therapy options for IMIDs. In this review, we have discussed recent trends in the fabrication of siRNA nanodelivery systems, including lipid‐based siRNA nanocarriers, liposomes, and cationic lipids, stable nucleic acid‐lipid particles, polymeric‐based siRNA nanocarriers, polyethylenimine (PEI)‐based nanosystems, chitosan‐based nanoformulations, inorganic material‐based siRNA nanocarriers, and hybrid‐based delivery systems. We have also introduced novel siRNA‐based nanocarriers to control IMIDs, such as pulmonary inflammation, psoriasis, inflammatory bowel disease, ulcerative colitis, rheumatoid arthritis, etc. This study will pave the way for new avenues of research into the diagnosis and treatment of IMDs.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Reza Ghamari
- Department of Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| | - Ali Bakhshi
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Sonia Fathi Karkan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Quimica Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Alcalá de Henares, Madrid, Spain
| |
Collapse
|