1
|
El Sherkawi T, Bani Saeid A, Yeung S, Chellappan DK, Mohamad S, Kokkinis S, Sudhakar S, Singh SK, Gupta G, Paudel KR, Hansbro PM, Oliver B, De Rubis G, Dua K. Therapeutic potential of 18-β-glycyrrhetinic acid-loaded poly (lactic-co-glycolic acid) nanoparticles on cigarette smoke-induced in-vitro model of COPD. Pathol Res Pract 2024; 263:155629. [PMID: 39348749 DOI: 10.1016/j.prp.2024.155629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is strongly linked to cigarette smoke, which contains toxins that induce oxidative stress and airway inflammation, ultimately leading to premature airway epithelial cell senescence and exacerbating COPD progression. Current treatments for COPD are symptomatic and hampered by limited efficacy and severe side effects. This highlights the need to search for an optimal therapeutic candidate to address the root causes of these conditions. This study investigates the possible potential of poly (lactic-co-glycolic acid) (PLGA)-based nanoparticles encapsulating the plant-based bioactive compound 18-β-glycyrrhetinic acid (18βGA) as a strategy to intervene in cigarette smoke extract (CSE)-induced oxidative stress, inflammation, and senescence, in vitro. We prepared 18βGA-PLGA nanoparticles, and assessed their effects on cell viability, reactive oxygen species (ROS) production, anti-senescence properties (expression of senescence-associated β galactosidase and p21 mRNA), and expression of pro-inflammatory genes (CXCL-1, IL-6, TNF-α) and inflammation-related proteins (IL-8, IL-15, RANTES, MIF). The highest non-toxic concentration of 18βGA-PLGA nanoparticles to healthy human broncho epithelial cell line BCiNS1.1 was identified as 5 µM. These nanoparticles effectively mitigated cigarette smoke-induced inflammation, reduced ROS production, protected against cellular aging, and counteracted the effects of CSE on the expression of the inflammation-related genes and proteins. This study underscores the potential of 18βGA encapsulated in PLGA nanoparticles as a promising therapeutic approach to alleviate cigarette smoke-induced oxidative stress, inflammation, and senescence. Further research is needed to explore the translational potential of these findings in clinical and in vivo settings.
Collapse
Affiliation(s)
- Tammam El Sherkawi
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ayeh Bani Saeid
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Siddiq Mohamad
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Sofia Kokkinis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Swathi Sudhakar
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia.
| | - Philip Michael Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Brian Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Macquarie University, Glebe, NSW 2037, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India.
| |
Collapse
|
2
|
Kumar M, Virmani T, Kumar G, Deshmukh R, Sharma A, Duarte S, Brandão P, Fonte P. Nanocarriers in Tuberculosis Treatment: Challenges and Delivery Strategies. Pharmaceuticals (Basel) 2023; 16:1360. [PMID: 37895831 PMCID: PMC10609727 DOI: 10.3390/ph16101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
The World Health Organization identifies tuberculosis (TB), caused by Mycobacterium tuberculosis, as a leading infectious killer. Although conventional treatments for TB exist, they come with challenges such as a heavy pill regimen, prolonged treatment duration, and a strict schedule, leading to multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains. The rise of MDR strains endangers future TB control. Despite these concerns, the hunt for an efficient treatment continues. One breakthrough has been the use of nanotechnology in medicines, presenting a novel approach for TB treatment. Nanocarriers, such as lipid nanoparticles, nanosuspensions, liposomes, and polymeric micelles, facilitate targeted delivery of anti-TB drugs. The benefits of nanocarriers include reduced drug doses, fewer side effects, improved drug solubility, better bioavailability, and improved patient compliance, speeding up recovery. Additionally, nanocarriers can be made even more targeted by linking them with ligands such as mannose or hyaluronic acid. This review explores these innovative TB treatments, including studies on nanocarriers containing anti-TB drugs and related patents.
Collapse
Affiliation(s)
- Mahesh Kumar
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (M.K.); (G.K.); (A.S.)
| | - Tarun Virmani
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (M.K.); (G.K.); (A.S.)
| | - Girish Kumar
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (M.K.); (G.K.); (A.S.)
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India;
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (M.K.); (G.K.); (A.S.)
| | - Sofia Duarte
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisbon, Portugal; (S.D.); (P.B.)
- Associate Laboratory i4HB—Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Pedro Brandão
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisbon, Portugal; (S.D.); (P.B.)
- Associate Laboratory i4HB—Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Pedro Fonte
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisbon, Portugal; (S.D.); (P.B.)
- Associate Laboratory i4HB—Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| |
Collapse
|
3
|
Bharti Sharma J, Bhatt S, Tiwari A, Tiwari V, Kumar M, Verma R, Kaushik D, Virmani T, Kumar G, Al kamaly O, Saleh A, Khalid Parvez M, Alhalmi A. Statistical optimization of tetrahydrocurcumin loaded solid lipid nanoparticles using Box Behnken design in the management of streptozotocin-induced diabetes mellitus. Saudi Pharm J 2023; 31:101727. [PMID: 37638219 PMCID: PMC10448172 DOI: 10.1016/j.jsps.2023.101727] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
In the past, curcumin was the go-to medication for diabetes, but recent studies have shown that tetrahydrocurcumin is more effective. The problem is that it's not very soluble in water or very bioavailable. So, our research aims to increase the bioavailability and anti-diabetic efficacy of tetrahydrocurcumin in streptozotocin-induced diabetic rats by synthesizing tetrahydrocurcumin-loaded solid lipid nanoparticles. Box Behnken Design was employed for the optimization of tetrahydrocurcumin-loaded solid lipid nanoparticles (THC-SLNs). The optimal formulation was determined by doing an ANOVA to examine the relationship between the independent variables (drug-to-lipid ratio, surfactant concentration, and co-surfactant concentration) and the dependent variables (particle size, percent entrapment efficiency, and PDI). Particle size, PDI, and entrapment efficiency all showed statistical significance based on F-values and p-values. The optimized batch was prepared using a drug-to-lipid ratio (1:4.16), 1.21% concentration of surfactant, and 0.4775% co-surfactant (observed with a particle size of 147.1 nm, 83.58 ± 0.838 % entrapment efficiency, and 0.265 PDI, and the values were found very close with the predicted ones. As the THC peak vanishes from the DSC thermogram of the improved formulation, this indicates that the drug has been transformed from its crystalline form into its amorphous state. TEM analysis of optimized formulation demonstrated mono-dispersed particles with an average particle size of 145 nm which are closely related to zetasizer's results. In-vitro release study of optimized formulation demonstrated burst release followed by sustained release up to 71.04% throughout 24 hrs. Increased bioavailability of the adjusted THC-SLN was found in an in vivo pharmacokinetics research with 9.47 folds higher AUC(0-t) compared to plain THC-suspension. Additionally, pharmacodynamic experiments of optimized formulation demonstrated a marked decrease in blood glucose level to 63.7% and increased body weight from 195.8 ± 7.223 to 231.2 ± 7.653 on the 28th day of the study and showed a better anti-diabetic effect than plain drug suspension. Results of stability studies revealed that formulation can be stored for longer periods at room temperature. Tetrahydrocurcumin can be effectively administered by SLN for the treatment of diabetes.
Collapse
Affiliation(s)
- Jai Bharti Sharma
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Haryana, India
| | - Shailendra Bhatt
- Shrinathji Institute of Pharmacy, Shrinathji Society for Higher Education Upali Oden, Nathdwara, Rajasmand, Rajasthan, India
| | - Abhishek Tiwari
- Pharmacy Academy, IFTM University, Lodhipur-Rajput, Moradabad 244102, U.P., India
| | - Varsha Tiwari
- Pharmacy Academy, IFTM University, Lodhipur-Rajput, Moradabad 244102, U.P., India
| | - Manish Kumar
- School of Pharmaceutical Sciences, CT University, Ludhiana, Punjab, India
| | - Ravinder Verma
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal, University, Bhiwani 127021, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India
| | - Omkulthom Al kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O Box 84428, Riyadh 11671, Saudi Arabia
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohammed Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
4
|
Budhori A, Tiwari A, Tiwari V, Sharma A, Kumar M, Gautam G, Virmani T, Kumar G, Alhalmi A, Noman OM, Hasson S, Mothana RA. QbD Design, Formulation, Optimization and Evaluation of Trans-Tympanic Reverse Gelatination Gel of Norfloxacin: Investigating Gene-Gene Interactions to Enhance Therapeutic Efficacy. Gels 2023; 9:657. [PMID: 37623112 PMCID: PMC10454480 DOI: 10.3390/gels9080657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Traditional otic drug delivery methods lack controlled release capabilities, making reverse gelatination gels a promising alternative. Reverse gelatination gels are colloidal systems that transition from a sol to a gel phase at the target site, providing controlled drug release over an extended period. Thermosensitive norfloxacin reverse gelatination gels were developed using a Quality by Design (QbD)-based optimization approach. The formulations were evaluated for their in vitro release profile, rheological behavior, visual appearance, pH, gelling time, and sol-gel transition temperature. The results show that the gelation temperatures of the formulations ranged from 33 to 37 °C, with gelling durations between 35 and 90 s. The drug content in the formulations was uniform, with entrapment efficiency ranging from 55% to 95%. Among the formulations, F10 exhibited the most favorable properties and was selected for a stability study lasting 60 days. Ex-vivo release data demonstrate that the F10 formulation achieved 95.6percentage of drug release at 360 min. This study successfully developed thermosensitive norfloxacin reverse gelatination gels using a QbD-based optimization approach. The selected formulation, F10, exhibited desirable properties in terms of gelling temperature, drug content, and release profile. These gels hold potential for the controlled delivery of norfloxacin in the treatment of ear infections.
Collapse
Affiliation(s)
- Amit Budhori
- Devsthali Vidyapeeth Institute of Pharmacy, Lalpur, Rudrapur 263148, India;
| | | | - Varsha Tiwari
- Pharmacy Academy, IFTM University, Moradabad 244102, India
| | - Ajay Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India;
| | - Manish Kumar
- School of Pharmaceutical Sciences, CT University, Ludhiana 142024, India;
| | | | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal 121105, India; (T.V.); (G.K.)
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Palwal 121105, India; (T.V.); (G.K.)
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Omar Mohammed Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (O.M.N.); (R.A.M.)
| | - Sidgi Hasson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 5UG, UK;
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (O.M.N.); (R.A.M.)
| |
Collapse
|
5
|
Ahalwat S, Bhatt DC, Rohilla S, Jogpal V, Sharma K, Virmani T, Kumar G, Alhalmi A, Alqahtani AS, Noman OM, Almoiliqy M. Mannose-Functionalized Isoniazid-Loaded Nanostructured Lipid Carriers for Pulmonary Delivery: In Vitro Prospects and In Vivo Therapeutic Efficacy Assessment. Pharmaceuticals (Basel) 2023; 16:1108. [PMID: 37631023 PMCID: PMC10458796 DOI: 10.3390/ph16081108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Resistance to isoniazid (INH) is common and increases the possibility of acquiring multidrug-resistant tuberculosis. For this study, isoniazid-loaded nanostructured lipid carriers (INH-NLCs) were developed and effectively functionalized with mannose (Man) to enhance the residence time of the drug within the lungs via specific delivery and increase the therapeutic efficacy of the formulation. The mannose-functionalized isoniazid-loaded nanostructured lipid carrier (Man-INH-NLC) formulation was evaluated with respect to various formulation parameters, namely, encapsulation efficiency (EE), drug loading (DL), average particle size (PS), zeta potential (ZP), polydispersity index (PDI), in vitro drug release (DR), and release kinetics. The in vitro inhalation behavior of the developed formulation after nebulization was investigated using an Andersen cascade impactor via the estimation of the mass median aerosolized diameter (MMAD) and geometric aerodynamic diameter (GAD) and subsequently found to be suitable for effective lung delivery. An in vivo pharmacokinetic study was carried out in a guinea pig animal model, and it was demonstrated that Man-INH-NLC has a longer residence time in the lungs with improved pharmacokinetics when compared with unfunctionalized INH-NLC, indicating the enhanced therapeutic efficacy of the Man-INH-NLC formulation. Histopathological analysis led us to determine that the extent of tissue damage was more severe in the case of the pure drug solution of isoniazid compared to the Man-INH-NLC formulation after nebulization. Thus, the nebulization of Man-INH-NLC was found to be safe, forming a sound basis for enhancing the therapeutic efficacy of the drug for improved management in the treatment of pulmonary tuberculosis.
Collapse
Affiliation(s)
- Shaveta Ahalwat
- School of Medical and Allied Sciences, G. D. Goenka University, Gurugram 122103, India; (V.J.); (K.S.)
| | - Dinesh Chandra Bhatt
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India;
| | - Surbhi Rohilla
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India;
| | - Vikas Jogpal
- School of Medical and Allied Sciences, G. D. Goenka University, Gurugram 122103, India; (V.J.); (K.S.)
| | - Kirti Sharma
- School of Medical and Allied Sciences, G. D. Goenka University, Gurugram 122103, India; (V.J.); (K.S.)
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal 121105, India; (T.V.); (G.K.)
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Palwal 121105, India; (T.V.); (G.K.)
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Ali S. Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.S.A.); (O.M.N.)
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.S.A.); (O.M.N.)
| | - Marwan Almoiliqy
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
6
|
Virmani T, Kumar G, Sharma A, Pathak K, Akhtar MS, Afzal O, Altamimi ASA. Amelioration of Cancer Employing Chitosan, Its Derivatives, and Chitosan-Based Nanoparticles: Recent Updates. Polymers (Basel) 2023; 15:2928. [PMID: 37447573 DOI: 10.3390/polym15132928] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The limitations associated with the conventional treatment of cancer have necessitated the design and development of novel drug delivery systems based mainly on nanotechnology. These novel drug delivery systems include various kinds of nanoparticles, such as polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, hydrogels, and polymeric micelles. Among the various kinds of novel drug delivery systems, chitosan-based nanoparticles have attracted the attention of researchers to treat cancer. Chitosan is a polycationic polymer generated from chitin with various characteristics such as biocompatibility, biodegradability, non-toxicity, and mucoadhesiveness, making it an ideal polymer to fabricate drug delivery systems. However, chitosan is poorly soluble in water and soluble in acidic aqueous solutions. Furthermore, owing to the presence of reactive amino groups, chitosan can be chemically modified to improve its physiochemical properties. Chitosan and its modified derivatives can be employed to fabricate nanoparticles, which are used most frequently in the pharmaceutical sector due to their possession of various characteristics such as nanosize, appropriate pharmacokinetic and pharmacodynamic properties, non-immunogenicity, improved stability, and improved drug loading capacity. Furthermore, it is capable of delivering nucleic acids, chemotherapeutic medicines, and bioactives using modified chitosan. Chitosan and its modified derivative-based nanoparticles can be targeted to specific cancer sites via active and passive mechanisms. Based on chitosan drug delivery systems, many anticancer drugs now have better effectiveness, potency, cytotoxicity, or biocompatibility. The characteristics of chitosan and its chemically tailored derivatives, as well as their use in cancer therapy, will be examined in this review.
Collapse
Affiliation(s)
- Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Haryana 121105, India
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Haryana 121105, India
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Haryana 121105, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Etawah 206001, India
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha 62223, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
7
|
Kumar G, Virmani T, Sharma A, Pathak K. Codelivery of Phytochemicals with Conventional Anticancer Drugs in Form of Nanocarriers. Pharmaceutics 2023; 15:889. [PMID: 36986748 PMCID: PMC10055866 DOI: 10.3390/pharmaceutics15030889] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Anticancer drugs in monotherapy are ineffective to treat various kinds of cancer due to the heterogeneous nature of cancer. Moreover, available anticancer drugs possessed various hurdles, such as drug resistance, insensitivity of cancer cells to drugs, adverse effects and patient inconveniences. Hence, plant-based phytochemicals could be a better substitute for conventional chemotherapy for treatment of cancer due to various properties: lesser adverse effects, action via multiple pathways, economical, etc. Various preclinical studies have demonstrated that a combination of phytochemicals with conventional anticancer drugs is more efficacious than phytochemicals individually to treat cancer because plant-derived compounds have lower anticancer efficacy than conventional anticancer drugs. Moreover, phytochemicals suffer from poor aqueous solubility and reduced bioavailability, which must be resolved for efficacious treatment of cancer. Therefore, nanotechnology-based novel carriers are employed for codelivery of phytochemicals and conventional anticancer drugs for better treatment of cancer. These novel carriers include nanoemulsion, nanosuspension, nanostructured lipid carriers, solid lipid nanoparticles, polymeric nanoparticles, polymeric micelles, dendrimers, metallic nanoparticles, carbon nanotubes that provide various benefits of improved solubility, reduced adverse effects, higher efficacy, reduced dose, improved dosing frequency, reduced drug resistance, improved bioavailability and higher patient compliance. This review summarizes various phytochemicals employed in treatment of cancer, combination therapy of phytochemicals with anticancer drugs and various nanotechnology-based carriers to deliver the combination therapy in treatment of cancer.
Collapse
Affiliation(s)
- Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai 206001, India
| |
Collapse
|
8
|
Kytka-Sharpe D. Welcome to volume 18 of Nanomedicine. Nanomedicine (Lond) 2023; 18:1-4. [PMID: 36995037 DOI: 10.2217/nnm-2023-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Affiliation(s)
- Dan Kytka-Sharpe
- Future Science Group, Unitec House, 2 Albert Place, London, N3 1QB, UK
| |
Collapse
|