1
|
Nisha R, Kumar P, Mishra N, Maurya P, Ahmad S, Singh N, Saraf SA. Appraisal of folate functionalized bosutinib cubosomes against hepatic cancer cells: In-vitro, In-silico, and in-vivo pharmacokinetic study. Int J Pharm 2024; 654:123975. [PMID: 38452833 DOI: 10.1016/j.ijpharm.2024.123975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Targeted therapies enhance the efficacy of tumour screening and management while lowering side effects. Multiple tumours, including liver cancer, exhibit elevated levels of folate receptor expression. This research attempted to develop surface-functionalised bosutinib cubosomes against hepatocellular carcinoma. The novelty of this work is the anti-hepatic action of bosutinib (BST) and folic acid-modified bosutinib cubosomes (BSTMF) established through proto-oncogene tyrosine-protein kinase (SrC)/ focal adhesion kinase(FAK), reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and cell cytotoxicity. Later, the in-vivo pharmacokinetics of BSTMF were determined for the first time. The strong affinity of folic acid (FA) for folate receptors allows BSTMF to enter cells via FA receptor-mediated endocytosis. The particle size of the prepared BSTMF was 188.5 ± 2.25 nm, and its zeta potential was -20.19 ± 2.01 mV, an encapsulation efficiency of 90.31 ± 3.15 %, and a drug release rate of 76.70 ± 2.10 % for 48 h. The surface architecture of BSTMF was identified using transmission electron microscopy (TEM) and Atomic force microscopy (AFM). Cell-line studies demonstrated that BSTMF substantially lowered the viability of Hep G2 cells compared to BST and bosutinib-loaded cubosomes (BSTF). BSTMF demonstrated an elevated BST concentration in tumour tissue than in other organs and also displayed superior pharmacokinetics, implying that they hold potential against hepatic cancers. This is the first study to show that BSTMF may be effective against liver cancer by targeting folate receptors and triggering SrC/FAK-dependent apoptotic pathways. Multiple parameters demonstrated that BSTMF enhanced anticancer targeting, therapeutic efficacy, and safety in NDEA-induced hepatocellular carcinoma.
Collapse
Affiliation(s)
- Raquibun Nisha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Pranesh Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India; Department of Pharmacology, Institute of Pharmaceutical Sciences, University of Lucknow, Lucknow, 226031, India
| | - Nidhi Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Priyanka Maurya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India; Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Sector II, Dr Akhilesh Das Nagar, Faizabad Road, Lucknow, 226028, India
| | - Shakir Ahmad
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Neelu Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India; National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Transit Campus: NIPER-Raebareli, Sarojini Nagar, Near CRPF Base Camp, Lucknow 226002, India.
| |
Collapse
|
2
|
Wu D, Si M, Xue HY, Tran NT, Khalili K, Kaminski R, Wong HL. Lipid nanocarrier targeting activated macrophages for antiretroviral therapy of HIV reservoir. Nanomedicine (Lond) 2023; 18:1343-1360. [PMID: 37815117 PMCID: PMC10652294 DOI: 10.2217/nnm-2023-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/21/2023] [Indexed: 10/11/2023] Open
Abstract
Aim: To develop lipid nano-antiretrovirals (LNAs) for the treatment of HIV-infected macrophages. Materials & methods: LNAs were prepared with docosahexaenoic acid to facilitate brain penetration and surface-decorated with folate considering that infected macrophages often overexpress folate receptors. Results: Folate-decorated LNAs loading rilpivirine (RPV) were efficiently taken up by folate receptor-expressing cell types including activated macrophages. The intracellular Cmax of the RPV-LNAs in activated macrophages was 2.54-fold and the area under the curve was 3.4-fold versus free RPV, translating to comparable or higher (p < 0.01; RPV ≤6.5 ng/ml) activities against HIV infectivity and superior protection (p < 0.05) against HIV cytotoxicity. LNAs were also effective in monocyte-derived macrophages. Conclusion: These findings demonstrate the potential of LNAs for the treatment of infected macrophages, which are key players in HIV reservoirs.
Collapse
Affiliation(s)
- Di Wu
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Mengjie Si
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Hui Yi Xue
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Ngoc T Tran
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Kamel Khalili
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Rafal Kaminski
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ho Lun Wong
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| |
Collapse
|