1
|
Vafaee F, Derakhshani M, Ghasemzadeh Rahbardar M, Hosseinzadeh H. Alpha-lipoic acid, as an effective agent against toxic elements: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3345-3372. [PMID: 39556148 DOI: 10.1007/s00210-024-03576-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024]
Abstract
This review aims to evaluate the efficacy of alpha-lipoic acid (ALA) in combating toxic elements, such as aluminum, arsenic, lead, mercury, and cadmium. The primary research question addressed is whether ALA can effectively mitigate the toxic effects of these metals through its antioxidant and chelating properties. Articles published between 1995 and 2024 were collected from Scopus, PubMed, Google Scholar, and Web of Science. Using Boolean (AND and OR), English-language publications were selected based on medical subject headings, titles, or abstracts that contained keywords related to ALA, metals, toxicity, antioxidants, and chelation. ALA supplementation significantly enhances cellular defense mechanisms and antioxidant enzyme activity. It effectively mitigates the adverse effects of aluminum exposure, counters arsenic toxicity in various cells and organs, and reduces cadmium toxicity, resulting in lower mortality rates among treated groups. Although ALA acts as a lead chelator, its efficacy is less than standard chelators. In the case of mercury, ALA shows beneficial effects in long-term therapy, although its capacity to reduce mercury concentration is limited. Overall, ALA emerges as a promising alternative for alleviating metal toxicity by enhancing antioxidant defenses, chelating toxic metals, and reversing their harmful effects. Further research in this area is encouraged to explore the full potential of ALA in mitigating the toxic effects of metals on biological systems.
Collapse
Affiliation(s)
- Farzad Vafaee
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahla Derakhshani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Luo X, Xie D, Wu T, Xu W, Meng Q, Cao K, Hu J. Evaluation of the protective roles of alpha-lipoic acid supplementation on nanomaterial-induced toxicity: A meta-analysis of in vitro and in vivo studies. Front Nutr 2022; 9:991524. [PMID: 36147302 PMCID: PMC9486203 DOI: 10.3389/fnut.2022.991524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/17/2022] [Indexed: 01/02/2023] Open
Abstract
Extensive exposure to nanomaterials causes oxidative stress and inflammation in various organs and leads to an increased risk of adverse health outcomes; therefore, how to prevent the toxic effects are of great concern to human. Alpha-lipoic acid (ALA) has anti-oxidant and anti-inflammatory activities, suggesting it may be effective to prevent nanomaterial-induced toxicity. However, the results obtained in individual studies remained controversial. We aimed to comprehensively evaluate the effects of ALA supplementation on nanomaterial-induced toxicity by performing a meta-analysis. Databases of PubMed, EMBASE, and Cochrane Library were searched up to May 2022. STATA 15.0 software was used for statistical analysis. Twelve studies were included. Meta-analysis of eight in vivo studies showed ALA supplementation could exert significant effects on nanomaterial-induced oxidative stress (by reducing MDA, ROS and increasing GSH, CAT, GPx, and SOD), inflammation (by downregulating NO, IgG, TNF-α, IL-6, and CRP), apoptosis (by activation of pro-apoptotic caspase-3), DNA damage (by a reduction in the tail length) and organ damage (by a decrease in the liver biomarker ALT and increases in brain neuron biomarker AChE and heart biomarker CPK). Pooled analysis of four in vitro studies indicated ALA intervention increased cell viability, decreased ROS levels, inhibited cell apoptosis and chelated metal ions. Subgroup analyses revealed changing the levels of GSH, IL-6, and metal ions were the main protective mechanisms of ALA supplementation because they were not changed by any subgroup factors. In conclusion, ALA supplementation may represent a potential strategy for the prevention of the toxicity induced by nanomaterials.
Collapse
Affiliation(s)
- Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
- *Correspondence: Xiaogang Luo,
| | - Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Tong Wu
- Shanghai Jing Rui Yang Industrial Co., Ltd, Shanghai, China
| | - Wei Xu
- Shanghai Nutri-woods Bio-Technology Co., Ltd, Shanghai, China
| | - Qingyang Meng
- Shanghai Pechoin Daily Chemical Co., Ltd, Shanghai, China
| | - Kangli Cao
- Shanghai Institute of Spacecraft Equipment, Shanghai, China
| | - Jianchen Hu
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
- Jianchen Hu,
| |
Collapse
|
3
|
Wang Y, Tang M. Dysfunction of various organelles provokes multiple cell death after quantum dot exposure. Int J Nanomedicine 2018; 13:2729-2742. [PMID: 29765216 PMCID: PMC5944465 DOI: 10.2147/ijn.s157135] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Quantum dots (QDs) are different from the materials with the micrometer scale. Owing to the superiority in fluorescence and optical stability, QDs act as possible diagnostic and therapeutic tools for application in biomedical field. However, potential threats of QDs to human health hamper their wide utilization in life sciences. It has been reported that oxidative stress and inflammation are involved in toxicity caused by QDs. Recently, accumulating research unveiled that disturbance of subcellular structures plays a magnificent role in cytotoxicity of QDs. Diverse organelles would collapse during QD treatment, including DNA damage, endoplasmic reticulum stress, mitochondrial dysfunction and lysosomal rupture. Different forms of cellular end points on the basis of recent research have been concluded. Apart from apoptosis and autophagy, a new form of cell death termed pyroptosis, which is finely orchestrated by inflammasome complex and gasdermin family with secretion of interleukin-1 beta and interleukin-18, was also summarized. Finally, several potential cellular signaling pathways were also listed. Activation of Toll-like receptor-4/myeloid differentiation primary response 88, nuclear factor kappa-light-chain-enhancer of activated B cells and NACHT, LRR and PYD domains-containing protein 3 inflammasome pathways by QD exposure is associated with regulation of cellular processes. With the development of QDs, toxicity evaluation is far behind its development, where specific mechanisms of toxic effects are not clearly defined. Further studies concerned with this promising area are urgently required.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
4
|
Yokel RA. Physicochemical properties of engineered nanomaterials that influence their nervous system distribution and effects. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2081-2093. [DOI: 10.1016/j.nano.2016.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 10/21/2022]
|
5
|
Hu X, Li D, Gao Y, Mu L, Zhou Q. Knowledge gaps between nanotoxicological research and nanomaterial safety. ENVIRONMENT INTERNATIONAL 2016; 94:8-23. [PMID: 27203780 DOI: 10.1016/j.envint.2016.05.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/01/2016] [Accepted: 05/02/2016] [Indexed: 06/05/2023]
Abstract
With the wide research and application of nanomaterials in various fields, the safety of nanomaterials attracts much attention. An increasing number of reports in the literature have shown the adverse effects of nanomaterials, representing the quick development of nanotoxicology. However, many studies in nanotoxicology have not reflected the real nanomaterial safety, and the knowledge gaps between nanotoxicological research and nanomaterial safety remain large. Considering the remarkable influence of biological or environmental matrices (e.g., biological corona) on nanotoxicity, the situation of performing nanotoxicological experiments should be relevant to the environment and humans. Given the possibility of long-term and low-concentration exposure of nanomaterials, the reversibility of and adaptation to nanotoxicity, and the transgenerational effects should not be ignored. Different from common pollutants, the specific analysis methodology for nanotoxicology need development and exploration furthermore. High-throughput assay integrating with omics was highlighted in the present review to globally investigate nanotoxicity. In addition, the biological responses beyond individual levels, special mechanisms and control of nanotoxicity deserve more attention. The progress of nanotoxicology has been reviewed by previous articles. This review focuses on the blind spots in nanotoxicological research and provides insight into what we should do in future work to support the healthy development of nanotechnology and the evaluation of real nanomaterial safety.
Collapse
Affiliation(s)
- Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Dandan Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yue Gao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Li Mu
- Institute of Agro-Environmental Protection, Ministry of Agriculture, Tianjin 300191, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
6
|
Oh E, Liu R, Nel A, Gemill KB, Bilal M, Cohen Y, Medintz IL. Meta-analysis of cellular toxicity for cadmium-containing quantum dots. NATURE NANOTECHNOLOGY 2016; 11:479-86. [PMID: 26925827 DOI: 10.1038/nnano.2015.338] [Citation(s) in RCA: 281] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/16/2015] [Indexed: 04/14/2023]
Abstract
Understanding the relationships between the physicochemical properties of engineered nanomaterials and their toxicity is critical for environmental and health risk analysis. However, this task is confounded by material diversity, heterogeneity of published data and limited sampling within individual studies. Here, we present an approach for analysing and extracting pertinent knowledge from published studies focusing on the cellular toxicity of cadmium-containing semiconductor quantum dots. From 307 publications, we obtain 1,741 cell viability-related data samples, each with 24 qualitative and quantitative attributes describing the material properties and experimental conditions. Using random forest regression models to analyse the data, we show that toxicity is closely correlated with quantum dot surface properties (including shell, ligand and surface modifications), diameter, assay type and exposure time. Our approach of integrating quantitative and categorical data provides a roadmap for interrogating the wide-ranging toxicity data in the literature and suggests that meta-analysis can help develop methods for predicting the toxicity of engineered nanomaterials.
Collapse
Affiliation(s)
- Eunkeu Oh
- Optical Sciences Division, Code 5611, US Naval Research Laboratory, Washington, Washington DC 20375, USA
- Sotera Defense Solutions, Columbia, Maryland 21046, USA
| | - Rong Liu
- Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095-1496, USA
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
| | - Andre Nel
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
- Department of Medicine, Division of NanoMedicine, University of California, Los Angeles, California 90095, USA
| | - Kelly Boeneman Gemill
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, SW Washington, Washington DC 20375, USA
| | - Muhammad Bilal
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
| | - Yoram Cohen
- Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095-1496, USA
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095-1592, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, SW Washington, Washington DC 20375, USA
| |
Collapse
|
7
|
Shyamasundar S, Ng CT, Lanry Yung LY, Dheen ST, Bay BH. Epigenetic mechanisms in nanomaterial-induced toxicity. Epigenomics 2015; 7:395-411. [DOI: 10.2217/epi.15.3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
With the growing advent of nanotechnology in medicine (therapeutic, diagnostic and imaging applications), cosmetics, electronics, clothing and food industries, exposure to nanomaterials (NMs) is on the rise and therefore exploring their toxic biological effects have gained great significance. In vitro and in vivo studies over the last decade have revealed that NMs have the potential to cause cytotoxicity and genotoxicity although some contradictory reports exist. However, there are only few studies which have explored the epigenetic mechanisms (changes to DNA methylation, histone modification and miRNA expression) of NM-induced toxicity, and there is a scarcity of information and many questions in this area remain unexplored and unaddressed. This review comprehensively describes the epigenetic mechanisms involved in the induction of toxicity of engineered NMs, and provides comparisons between similar effects observed upon exposure to small or nanometer-sized particles. Lastly, gaps in existing literature and scope for future studies that improve our understanding of NM-induced epigenetic toxicity are discussed.
Collapse
Affiliation(s)
- Sukanya Shyamasundar
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594
| | - Cheng Teng Ng
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594
| | - Lin Yue Lanry Yung
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117576
| | - Shaikali Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594
| |
Collapse
|
8
|
Abdul Ghani SF, Wright M, Paramo JG, Bottrill M, Green M, Long N, Thanou M. Three bisphosphonate ligands improve the water solubility of quantum dots. Faraday Discuss 2015; 175:153-69. [PMID: 25318058 DOI: 10.1039/c4fd00151f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesised Quantum Dots (QDs) require surface modification in order to improve their aqueous dispersion and biocompatibility. Here, we suggest bisphosphonate molecules as agents to modify the surface of QDs for improved water solubility and biocompatibility. QDs_TOPO (CdSe/ZnS-trioctylphosphine oxide) were synthesised following modification of the method of Bawendi et al. (J. Phys. Chem. B, 1997, 101, 9463-9475). QDs surface modification is performed using a ligand exchange reaction with structurally different bisphosphonates (BIPs). The BIPs used were ethylene diphosphonate (EDP), methylenediphosphonate (MDP) and imidodiphosphonate (IDP). After ligand exchange, the QDs were extensively purified using centrifugation, PD-10 desalting columns and mini dialysis filters. Transmission electron microscopy (TEM) and fluorescent spectroscopy have been used to characterise the size and optical properties of the QDs. Cell toxicity was investigated using MTT (tetrazolium salt) and glutathione assays and intracellular uptake was imaged using confocal laser scanning microscopy and assessed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). QDs_TOPO and QDs-capped with BIPs (QDs_BIPs) were successfully synthesised. TEM showed the size and morphology of the QDs to be 5-7 nm with spherical shape. The stabilised QDs_BIPs showed significantly improved dispersion in aqueous solutions compared to QDs_TOPO. The cytotoxicity studies showed very rapid cell death for cells treated by QDs_TOPO and a minor effect on cell viability when QDs_BIPs were applied to the cells. Both EDP- and MDP-modified QDs did not significantly increase the intracellular levels of glutathione. In contrast, IDP-modified QDs substantially increased the intracellular glutathione levels, indicating potential cadmium leakage and inability of IDP to adequately cap and stabilise the QDs. EDP- and MDP-modified QDs were taken up by IGROV-1 (ovarian cancer) cells as shown by fluorescence microscopy, however, the IDP-modified QD signal was not clearly visible in the cells. Cellular uptake measured by intracellular cadmium levels using ICP-MS showed significant uptake of all three BIPs QDs. The structure of BIPs appears to play a significant role in the ability of these molecules to act as capping agents. Our findings demonstrate a novel approach to produce water-dispersible QDs through ligand exchange with certain types of BIPs molecules that can find application in bioimaging.
Collapse
Affiliation(s)
- Siti Fatimah Abdul Ghani
- Institute of Pharmaceutical Sciences, Franklin-Wilkins Building, KCL, 150 Stamford Street, London, SE1 9NH, UK.
| | | | | | | | | | | | | |
Collapse
|
9
|
Leong DT, Ng KW. Probing the relevance of 3D cancer models in nanomedicine research. Adv Drug Deliv Rev 2014; 79-80:95-106. [PMID: 24996135 DOI: 10.1016/j.addr.2014.06.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 06/17/2014] [Accepted: 06/24/2014] [Indexed: 12/12/2022]
Abstract
For decades, 2D cell culture format on plastic has been the main workhorse in cancer research. Though many important understandings of cancer cell biology were derived using this platform, it is not a fair representation of the in vivo scenario. In this review, both established and new 3D cell culture systems are discussed with specific references to anti-cancer drug and nanomedicine applications. 3D culture systems exploit more realistic spatial, biochemical and cellular heterogeneity parameters to bridge the experimental gap between in vivo and in vitro settings when studying the performance and efficacy of novel nanomedicine strategies to manage cancer. However, the complexities associated with 3D culture systems also necessitate greater technical expertise in handling and characterizing in order to arrive at meaningful experimental conclusions. Finally, we have also provided future perspectives where cutting edge 3D culture technologies may be combined with under-explored technologies to build better in vitro cancer platforms.
Collapse
|
10
|
Yokel R, Grulke E, MacPhail R. Metal-based nanoparticle interactions with the nervous system: the challenge of brain entry and the risk of retention in the organism. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:346-73. [PMID: 23568784 DOI: 10.1002/wnan.1202] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review of metal-based nanoparticles focuses on factors influencing their distribution into the nervous system, evidence they enter brain parenchyma, and nervous system responses. Gold is emphasized as a model metal-based nanoparticle and for risk assessment in the companion review. The anatomy and physiology of the nervous system, basics of colloid chemistry, and environmental factors that influence what cells see are reviewed to provide background on the biological, physical-chemical, and internal milieu factors that influence nervous system nanoparticle uptake. The results of literature searches reveal little nanoparticle research included the nervous system, which about equally involved in vitro and in vivo methods, and very few human studies. The routes of uptake into the nervous system and mechanisms of nanoparticle uptake by cells are presented with examples. Brain nanoparticle uptake inversely correlates with size. The influence of shape has not been reported. Surface charge has not been clearly shown to affect flux across the blood-brain barrier. There is very little evidence for metal-based nanoparticle distribution into brain parenchyma. Metal-based nanoparticle disruption of the blood-brain barrier and adverse brain changes have been shown, and are more pronounced for spheres than rods. Study concentrations need to be put in exposure contexts. Work with dorsal root ganglion cells and brain cells in vitro show the potential for metal-based nanoparticles to produce toxicity. Interpretation of these results must consider the ability of nanoparticles to distribute across the barriers protecting the nervous system. Effects of the persistence of poorly soluble metal-based nanoparticles are of particular concern.
Collapse
Affiliation(s)
- Robert Yokel
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA.
| | | | | |
Collapse
|
11
|
Jain MP, Vaisheva F, Maysinger D. Metalloestrogenic effects of quantum dots. Nanomedicine (Lond) 2011; 7:23-37. [PMID: 22011313 DOI: 10.2217/nnm.11.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM To investigate the metalloestrogenic effects of cadmium telluride quantum dots (QDs) in both human breast cancer cells and in vivo in mice. MATERIALS & METHODS Human breast cancer cells (MCF-7 cells) were utilized to study QDs, cadmium and 17β-estradiol induced estrogen-related genomic and nongenomic signaling. Female prepubescent and ovariectomized adult mice were treated with CdTe QDs to assess whether QD-induced estrogenicity would lead to uterine changes. RESULTS & DISCUSSION Our findings demonstrate that in vitro cadmium-containing QDs induce cellular proliferation, estrogen receptor α activation, and biphasic phosphorylation of AKT and ERK1/2, comparable with 17β-estradiol. Green QDs elicited a more robust estrogenic response than orange QDs. Addition of the selective estrogen receptor antagonist, ICI 182780, completely abolished all QD-induced estrogenic effects, suggesting that QD-induced estrogenic signaling is mediated via the estrogen receptor. In vivo, chronic treatment of mice with QDs led to a two- to three-fold increase in uterine weight, comparable or greater than 17β-estradiol. CONCLUSION These findings suggest that certain cadmium-containing nanocrystals are endocrine disruptors, whose effects can exceed those induced by ionic cadmium or 17β-estradiol.
Collapse
Affiliation(s)
- Manasi P Jain
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, McIntyre Medical Sciences Building, Room 1314, Montreal, QC, H3G 1Y6, Canada
| | | | | |
Collapse
|
12
|
Al-Hajaj NA, Moquin A, Neibert KD, Soliman GM, Winnik FM, Maysinger D. Short ligands affect modes of QD uptake and elimination in human cells. ACS NANO 2011; 5:4909-4918. [PMID: 21612298 DOI: 10.1021/nn201009w] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In order to better understand nanoparticle uptake and elimination mechanisms, we designed a controlled set of small, highly fluorescent quantum dots (QDs) with nearly identical hydrodynamic size (8-10 nm) but with varied short ligand surface functionalization. The properties of functionalized QDs and their modes of uptake and elimination were investigated systematically by asymmetrical flow field-flow fractionation (AF4), confocal fluorescence microscopy, flow cytometry (FACS), and flame atomic absorption (FAA). Using specific inhibitors of cellular uptake and elimination machinery in human embryonic kidney cells (Hek 293) and human hepatocellular carcinoma cells (Hep G2), we showed that QDs of the same size but with different surface properties were predominantly taken up through lipid raft-mediated endocytosis, however, to significantly different extents. The latter observation infers the contribution of additional modes of QD internalization, which include X-AG cysteine transporter for cysteine-functionalized QDs (QD-CYS). We also investigated putative modes of QD elimination and established the contribution of P-glycoprotein (P-gp) transporter in QD efflux. Results from these studies show a strong dependence between the properties of QD-associated small ligands and modes of uptake/elimination in human cells.
Collapse
Affiliation(s)
- Noura A Al-Hajaj
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1314, McIntyre Medical Sciences Building, Montreal, QC, H3G 1Y6, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Neibert KD, Maysinger D. Mechanisms of cellular adaptation to quantum dots--the role of glutathione and transcription factor EB. Nanotoxicology 2011; 6:249-62. [PMID: 21495880 DOI: 10.3109/17435390.2011.572195] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cellular adaptation is the dynamic response of a cell to adverse changes in its intra/extra cellular environment. The aims of this study were to investigate the role of: (i) the glutathione antioxidant system, and (ii) the transcription factor EB (TFEB), a newly revealed master regulator of lysosome biogenesis, in cellular adaptation to nanoparticle-induced oxidative stress. Intracellular concentrations of glutathione species and activation of TFEB were assessed in rat pheochromocytoma (PC12) cells following treatment with uncapped CdTe quantum dots (QDs), using biochemical, live cell fluorescence and immunocytochemical techniques. Exposure to toxic concentrations of QDs resulted in a significant enhancement of intracellular glutathione concentrations, redistribution of glutathione species and a progressive translocation and activation of TFEB. These changes were associated with an enlargement of the cellular lysosomal compartment. Together, these processes appear to have an adaptive character, and thereby participate in the adaptive cellular response to toxic nanoparticles.
Collapse
Affiliation(s)
- Kevin D Neibert
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec, Canada
| | | |
Collapse
|
14
|
Sharma A, Neibert K, Sharma R, Hourani R, Maysinger D, Kakkar A. Facile Construction of Multifunctional Nanocarriers Using Sequential Click Chemistry for Applications in Biology. Macromolecules 2011. [DOI: 10.1021/ma102354k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Anjali Sharma
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 2K6, Canada
| | - Kevin Neibert
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Rishi Sharma
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 2K6, Canada
| | - Rami Hourani
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 2K6, Canada
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 2K6, Canada
| |
Collapse
|
15
|
Hutter E, Maysinger D. Gold nanoparticles and quantum dots for bioimaging. Microsc Res Tech 2010; 74:592-604. [DOI: 10.1002/jemt.20928] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/26/2010] [Indexed: 12/21/2022]
|
16
|
Gaponik N, Rogach AL. Thiol-capped CdTe nanocrystals: progress and perspectives of the related research fields. Phys Chem Chem Phys 2010; 12:8685-93. [DOI: 10.1039/c000916d] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Boridy S, Takahashi H, Akiyoshi K, Maysinger D. The binding of pullulan modified cholesteryl nanogels to Aβ oligomers and their suppression of cytotoxicity. Biomaterials 2009; 30:5583-91. [DOI: 10.1016/j.biomaterials.2009.06.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 06/08/2009] [Indexed: 01/09/2023]
|