1
|
Cournut A, Hosu IS, Braud F, Moustiez P, Coffinier Y, Enjalbal C, Bich C. Development of nanomaterial enabling highly sensitive surface-assisted laser desorption/ionization mass spectrometry peptide analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9476. [PMID: 36656736 DOI: 10.1002/rcm.9476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
RATIONALE Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) is an approach derived from matrix-assisted laser desorption/ionization (MALDI)-MS which overcomes the drawbacks associated with the use of organic matrices required to co-crystallize with the analytes. Indeed, nanomaterials commonly used in SALDI-MS as inert surfaces to promote desorption/ionization (D/I) ensure straightforward direct deposition of samples while providing mass spectra with ions only related to the compound of interest. The objective of this study was to develop a novel SALDI-MS approach based on steel plates that are surfaces very rapidly and easily tuned to perform the most efficient peptide detection as possible. To compare the SALDI efficacy of such metal substrates, D/I efficiency and deposit homogeneity were evaluated according to steel plate fabrication processes. METHODS The studied surfaces were nanostructured steel plates that were chemically modified by perfluorosilane and textured according to different frequencies and laser writing powers. The capacity of each tested 100 surfaces was demonstrated by comparative analyses of a mixture of standard peptides (m/z 600-3000) performed with a MALDI-TOF instrument enabling MALDI, SALDI and imaging experiments. RESULTS A peptide mix was used to screen the different surfaces depending on their D/I efficiency and their ability to ensure homogeneous deposit of the samples. For that purpose, deposition homogeneity was visualized owing to reconstructed ionic images from all protonated or sodiated ions of the 10 peptides constituting the standard mix. CONCLUSIONS Seven surfaces were then selected satisfying the required D/I efficiency and deposit homogeneity criteria. Results obtained with these optimal surfaces were then compared with those recorded by MALDI-MS analyses used as references.
Collapse
Affiliation(s)
- Aline Cournut
- Univ. Montpellier, CNRS, ENSCM, IBMM, UMR 5247, Montpellier, France
| | - Ioana Silvia Hosu
- Bioresources Department, National Institute for Research and Development in Chemistry and Petrochemistry, Bucharest, Romania
| | - Flavie Braud
- Univ. Lille, CNRS, UMR 8520 - IEMN, Lille, France
| | | | | | | | - Claudia Bich
- Univ. Montpellier, CNRS, ENSCM, IBMM, UMR 5247, Montpellier, France
| |
Collapse
|
2
|
Li Y, Zhang H, Jiang J, Zhao L, Wang Y. SiO 2@Au nanoshell-assisted laser desorption/ionization mass spectrometry for coronary heart disease diagnosis. J Mater Chem B 2023; 11:2862-2871. [PMID: 36883839 DOI: 10.1039/d2tb02733j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Cardiovascular diseases have threatened human health, amongst which coronary heart disease (CHD) is the third most common cause of death. CHD is considered to be a metabolic disease; however, there is little research on the CHD metabolism. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has enabled the development of a suitable nanomaterial that can be used to obtain considerable high-quality metabolic information without complex pretreatment of biological fluid samples. This study combines SiO2@Au nanoshells with minute plasma to obtain metabolic fingerprints of CHD. The thickness of the SiO2@Au shell was also optimized to maximize the laser desorption/ionization effect. The results demonstrated 84% sensitivity at 85% specificity for distinguishing CHD patients from controls in the validation cohort.
Collapse
Affiliation(s)
- Yanyan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Hua Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Jingjing Jiang
- Department of Endocrinology and Metabolism, Fudan Institute of Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Lin Zhao
- Department of Endocrinology and Metabolism, Fudan Institute of Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China.
| |
Collapse
|
3
|
Müller WH, Verdin A, De Pauw E, Malherbe C, Eppe G. Surface-assisted laser desorption/ionization mass spectrometry imaging: A review. MASS SPECTROMETRY REVIEWS 2022; 41:373-420. [PMID: 33174287 PMCID: PMC9292874 DOI: 10.1002/mas.21670] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 05/04/2023]
Abstract
In the last decades, surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) has attracted increasing interest due to its unique capabilities, achievable through the nanostructured substrates used to promote the analyte desorption/ionization. While the most widely recognized asset of SALDI-MS is the untargeted analysis of small molecules, this technique also offers the possibility of targeted approaches. In particular, the implementation of SALDI-MS imaging (SALDI-MSI), which is the focus of this review, opens up new opportunities. After a brief discussion of the nomenclature and the fundamental mechanisms associated with this technique, which are still highly controversial, the analytical strategies to perform SALDI-MSI are extensively discussed. Emphasis is placed on the sample preparation but also on the selection of the nanosubstrate (in terms of chemical composition and morphology) as well as its functionalization possibilities for the selective analysis of specific compounds in targeted approaches. Subsequently, some selected applications of SALDI-MSI in various fields (i.e., biomedical, biological, environmental, and forensic) are presented. The strengths and the remaining limitations of SALDI-MSI are finally summarized in the conclusion and some perspectives of this technique, which has a bright future, are proposed in this section.
Collapse
Affiliation(s)
- Wendy H. Müller
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Alexandre Verdin
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| |
Collapse
|
4
|
Zhang H, Zhao L, Jiang J, Zheng J, Yang L, Li Y, Zhou J, Liu T, Xu J, Lou W, Yang W, Tan L, Liu W, Yu Y, Ji M, Xu Y, Lu Y, Li X, Liu Z, Tian R, Hu C, Zhang S, Hu Q, Deng Y, Ying H, Zhong S, Zhang X, Wang Y, Wang H, Bai J, Li X, Duan X. Multiplexed nanomaterial-assisted laser desorption/ionization for pan-cancer diagnosis and classification. Nat Commun 2022; 13:617. [PMID: 35105875 PMCID: PMC8807648 DOI: 10.1038/s41467-021-26642-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
As cancer is increasingly considered a metabolic disorder, it is postulated that serum metabolite profiling can be a viable approach for detecting the presence of cancer. By multiplexing mass spectrometry fingerprints from two independent nanostructured matrixes through machine learning for highly sensitive detection and high throughput analysis, we report a laser desorption/ionization (LDI) mass spectrometry-based liquid biopsy for pan-cancer screening and classification. The Multiplexed Nanomaterial-Assisted LDI for Cancer Identification (MNALCI) is applied in 1,183 individuals that include 233 healthy controls and 950 patients with liver, lung, pancreatic, colorectal, gastric, thyroid cancers from two independent cohorts. MNALCI demonstrates 93% sensitivity at 91% specificity for distinguishing cancers from healthy controls in the internal validation cohort, and 84% sensitivity at 84% specificity in the external validation cohort, with up to eight metabolite biomarkers identified. In addition, across those six different cancers, the overall accuracy for identifying the tumor tissue of origin is 92% in the internal validation cohort and 85% in the external validation cohort. The excellent accuracy and minimum sample consumption make the high throughput assay a promising solution for non-invasive cancer diagnosis. As cancer is increasingly considered a metabolic disorder, it is postulated that serum metabolite profiling can be a viable approach for detecting the presence of cancer. Here, the authors report a machine learning model using mass spectrometry-based liquid biopsy data for pan-cancer screening and classification.
Collapse
Affiliation(s)
- Hua Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Lin Zhao
- Department of Endocrinology and Metabolism, Fudan Institute of Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jingjing Jiang
- Department of Endocrinology and Metabolism, Fudan Institute of Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jie Zheng
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, 430079, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Yanyan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Tianshu Liu
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jianmin Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenhui Lou
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Weige Yang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Weiren Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yiyi Yu
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Meiling Ji
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yaolin Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yan Lu
- Department of Endocrinology and Metabolism, Fudan Institute of Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaomu Li
- Department of Endocrinology and Metabolism, Fudan Institute of Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhen Liu
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Rong Tian
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Shumang Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Qinsheng Hu
- Department of Orthopaedic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yangdong Deng
- School of Software, Tsinghua University, 100084, Beijing, China
| | - Hao Ying
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Sheng Zhong
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, 430079, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital, Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, China.
| | - Jingwei Bai
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China.
| | - Xiaoying Li
- Department of Endocrinology and Metabolism, Fudan Institute of Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.,California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
5
|
Xu H, Zhang Z, Wang Y, Lu W, Min Q. Engineering of nanomaterials for mass spectrometry analysis of biomolecules. Analyst 2021; 146:5779-5799. [PMID: 34397044 DOI: 10.1039/d1an00860a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mass spectrometry (MS) based analysis has received intense attention in diverse biological fields. However, direct MS interrogation of target biomolecules in complex biological samples is still challenging, due to the extremely low abundance and poor ionization potency of target biological species. Innovations in nanomaterials create new auxiliary tools for deep and comprehensive MS characterization of biomolecules. More recently, growing research interest has been directed to the compositional and structural engineering of nanomaterials for enriching target biomolecules prior to MS analysis, enhancing the ionization efficiency in MS detection and designing biosensing nanoprobes in sensitive MS readout. In this review, we mainly focus on the recent advances in the engineering of nanomaterials towards their applications in sample pre-treatment, desorption/ionization matrices and ion signal amplification for MS profiling of biomolecules. This review will provide a toolbox of nanomaterials for researchers devoted to developing analytical methods and practical applications in the biological MS field.
Collapse
Affiliation(s)
- Hongmei Xu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China. and Institute of Environmental Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Zhenzhen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Yihan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Weifeng Lu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
6
|
Nanoparticle-based surface assisted laser desorption ionization mass spectrometry: a review. Mikrochim Acta 2019; 186:682. [DOI: 10.1007/s00604-019-3770-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/16/2019] [Indexed: 12/28/2022]
|
7
|
Long S, Qin Q, Wang Y, Yang Y, Wang Y, Deng A, Qiao L, Liu B. Nanoporous silica coupled MALDI-TOF MS detection of Bence-Jones proteins in human urine for diagnosis of multiple myeloma. Talanta 2019; 200:288-292. [PMID: 31036186 DOI: 10.1016/j.talanta.2019.03.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/12/2019] [Accepted: 03/16/2019] [Indexed: 01/12/2023]
Abstract
Bence-Jones protein is a biomarker in urine for multiple myeloma. Traditional methods for urine Bence-Jones protein detection are either less-sensitive or laborious. Herein, we describe a new method for the detection of urine Bence-Jones protein using nanoporous materials and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Macroporous ordered silica foams (MOSF) were used to enrich proteins in urine, and then the materials-proteins composites were analyzed by MALDI-TOF MS. Based on the presence of specific mass spectrometric signals, Bence-Jones protein can be detected for the diagnosis of multiple myeloma. Twenty-one clinical positive and twenty-seven clinical negative urine samples were analyzed by the method. High sensitivity (95.24%, 20/21) and specificity (100%, 27/27) for the diagnosis of multiple myeloma were achieved. Compared to other methods for multiple myeloma diagnosis, e.g. immunofixation electrophoresis and immunonephelometry, our approach is more rapid, economical and convenient, which can be a new choice for the clinical diagnosis of Bence-Jones protein related diseases.
Collapse
Affiliation(s)
- Shuping Long
- Changhai Hospital, The Naval Military Medical University, Shanghai, China
| | - Qin Qin
- Changhai Hospital, The Naval Military Medical University, Shanghai, China
| | - Yuning Wang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Yi Yang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Yan Wang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Anmei Deng
- Changhai Hospital, The Naval Military Medical University, Shanghai, China.
| | - Liang Qiao
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, China.
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Ràfols P, Vilalta D, Torres S, Calavia R, Heijs B, McDonnell LA, Brezmes J, del Castillo E, Yanes O, Ramírez N, Correig X. Assessing the potential of sputtered gold nanolayers in mass spectrometry imaging for metabolomics applications. PLoS One 2018; 13:e0208908. [PMID: 30540827 PMCID: PMC6291137 DOI: 10.1371/journal.pone.0208908] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022] Open
Abstract
Mass spectrometry imaging (MSI) is a molecular imaging technique that maps the distribution of molecules in biological tissues with high spatial resolution. The most widely used MSI modality is matrix-assisted laser desorption/ionization (MALDI), mainly due to the large variety of analyte classes amenable for MALDI analysis. However, the organic matrices used in classical MALDI may impact the quality of the molecular images due to limited lateral resolution and strong background noise in the low mass range, hindering its use in metabolomics. Here we present a matrix-free laser desorption/ionization (LDI) technique based on the deposition of gold nanolayers on tissue sections by means of sputter-coating. This gold coating method is quick, fully automated, reproducible, and allows growing highly controlled gold nanolayers, necessary for high quality and high resolution MS image acquisition. The performance of the developed method has been tested through the acquisition of MS images of brain tissues. The obtained spectra showed a high number of MS peaks in the low mass region (m/z below 1000 Da) with few background peaks, demonstrating the ability of the sputtered gold nanolayers of promoting the desorption/ionization of a wide range of metabolites. These results, together with the reliable MS spectrum calibration using gold peaks, make the developed method a valuable alternative for MSI applications.
Collapse
Affiliation(s)
- Pere Ràfols
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- * E-mail: (PR); (NR)
| | - Dídac Vilalta
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Sònia Torres
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
| | - Raul Calavia
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
| | - Bram Heijs
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Liam A. McDonnell
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden The Netherlands
- Fondazione Pisana per la Scienza ONLUS, Pisa, Italy
| | - Jesús Brezmes
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Esteban del Castillo
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
| | - Oscar Yanes
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Noelia Ramírez
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
- * E-mail: (PR); (NR)
| | - Xavier Correig
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
| |
Collapse
|
9
|
Qin L, Zhang Y, Liu Y, He H, Han M, Li Y, Zeng M, Wang X. Recent advances in matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) for in situ analysis of endogenous molecules in plants. PHYTOCHEMICAL ANALYSIS : PCA 2018; 29:351-364. [PMID: 29667236 DOI: 10.1002/pca.2759] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/01/2018] [Accepted: 02/04/2018] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Mass spectrometry imaging (MSI) as a label-free and powerful imaging technique enables in situ evaluation of a tissue metabolome and/or proteome, becoming increasingly popular in the detection of plant endogenous molecules. OBJECTIVE The characterisation of structure and spatial information of endogenous molecules in plants are both very important aspects to better understand the physiological mechanism of plant organism. METHODS Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a commonly-used tissue imaging technique, which requires matrix to assist in situ detection of a variety of molecules on the surface of a tissue section. In previous studies, MALDI-MSI was mostly used for the detection of molecules from animal tissue sections, compared to plant samples due to cell structural limitations, such as plant cuticles, epicuticular waxes, and cell walls. Despite the enormous progress that has been made in tissue imaging, there is still a challenge for MALDI-MSI suitable for the imaging of endogenous compounds in plants. RESULTS This review summarises the recent advances in MALDI-MSI, focusing on the application of in situ detection of endogenous molecules in different plant organs, i.e. root, stem, leaf, flower, fruit, and seed. CONCLUSION Further improvements on instrumentation sensitivity, matrix selection, image processing and sample preparation will expand the application of MALDI-MSI in plant research.
Collapse
Affiliation(s)
- Liang Qin
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Yawen Zhang
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Yaqin Liu
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Huixin He
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Manman Han
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Yanyan Li
- The Hospital of Minzu University of China, Minzu University of China, Beijing, P. R. China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Centre of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Xiaodong Wang
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| |
Collapse
|
10
|
Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes. Mikrochim Acta 2018; 185:200. [DOI: 10.1007/s00604-018-2687-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/18/2018] [Indexed: 12/14/2022]
|
11
|
Nanomaterials as Assisted Matrix of Laser Desorption/Ionization Time-of-Flight Mass Spectrometry for the Analysis of Small Molecules. NANOMATERIALS 2017; 7:nano7040087. [PMID: 28430138 PMCID: PMC5408179 DOI: 10.3390/nano7040087] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 12/31/2022]
Abstract
Matrix-assisted laser desorption/ionization (MALDI), a soft ionization method, coupling with time-of-flight mass spectrometry (TOF MS) has become an indispensible tool for analyzing macromolecules, such as peptides, proteins, nucleic acids and polymers. However, the application of MALDI for the analysis of small molecules (<700 Da) has become the great challenge because of the interference from the conventional matrix in low mass region. To overcome this drawback, more attention has been paid to explore interference-free methods in the past decade. The technique of applying nanomaterials as matrix of laser desorption/ionization (LDI), also called nanomaterial-assisted laser desorption/ionization (nanomaterial-assisted LDI), has attracted considerable attention in the analysis of low-molecular weight compounds in TOF MS. This review mainly summarized the applications of different types of nanomaterials including carbon-based, metal-based and metal-organic frameworks as assisted matrices for LDI in the analysis of small biological molecules, environmental pollutants and other low-molecular weight compounds.
Collapse
|
12
|
Hou J, Chen S, Cao C, Liu H, Xiong C, Zhang N, He Q, Song W, Nie Z. Application of flowerlike MgO for highly sensitive determination of lead via matrix-assisted laser desorption/ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30 Suppl 1:208-216. [PMID: 27539440 DOI: 10.1002/rcm.7637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
RATIONALE Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) is a high-throughput method to achieve fast and accurate identification of lead (Pb) exposure, but is seldom used because of low ionization efficiency and insufficient sensitivity. Nanomaterials applied in MS are a promising technique to overcome the obstacles of MALDI. METHODS Flowerlike MgO nanostructures are applied for highly sensitive lead profiling in real samples. They can be used in two ways: (a) MgO is mixed with N-naphthylethylenediamine dihydrochloride (NEDC) as a novel matrix MgO/NEDC; (b) MgO is applied as an absorbent to enrich Pb ions in very dilute solution. RESULTS The signal intensities of lead by MgO/NEDC were ten times higher than the NEDC matrix. It also shows superior anti-interference ability when analyzing 10 μmol/L Pb ions in the presence of organic substances or interfering metal ions. By applying MgO as adsorbent, the LOD of lead before enrichment is 1 nmol/L. Blood lead test can be achieved using this enrichment process. Besides, MgO can play the role of internal standard to achieve quantitative analysis. CONCLUSIONS Flowerlike MgO nanostructures were applied for highly sensitive lead profiling in real samples. The method is helpful to prevent Pb contamination in a wide range. Further, the combination of MgO with MALDI MS could inspire more nanomaterials being applied in highly sensitive profiling of pollutants. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jian Hou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Suming Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Changyan Cao
- Beijing National Laboratory for Molecular Science, Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Caiqiao Xiong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ning Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qing He
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weiguo Song
- Beijing National Laboratory for Molecular Science, Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
13
|
Wu J, Wei X, Gan J, Huang L, Shen T, Lou J, Liu B, Zhang JX, Qian K. Multifunctional Magnetic Particles for Combined Circulating Tumor Cells Isolation and Cellular Metabolism Detection. ADVANCED FUNCTIONAL MATERIALS 2016; 26:4016-4025. [PMID: 27524958 PMCID: PMC4978350 DOI: 10.1002/adfm.201504184] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We for the first time demonstrate multi-functional magnetic particles based rare cell isolation combined with the downstream laser desorption/ionization mass spectrometry (LDI-MS) to measure the metabolism of enriched circulating tumor cells (CTCs). The characterization of CTCs metabolism plays a significant role in understanding the tumor microenvironment, through exploring the diverse cellular process. However, characterizing cell metabolism is still challenging due to the low detection sensitivity, high sample complexity, and tedious preparation procedures, particularly for rare cells analysis in clinical study. Here we conjugate ferric oxide magnetic particles with anti-EpCAM on the surface for specific, efficient enrichment of CTCs from PBS and whole blood with cells concentration of 6-100 cells per mL. Moreover, these hydrophilic particles as matrix enable sensitive and selective LDI-MS detection of small metabolites (MW<500 Da) in complex bio-mixtures and can be further coupled with isotopic quantification to monitor selected molecules metabolism of ~50 CTCs. Our unique approach couples the immunomagnetic separation of CTCs and LDI-MS based metabolic analysis, which represents a key step forward for downstream metabolites analysis of rare cells to investigate the biological features of CTCs and their cellular responses in both pathological and physiological phenomena.
Collapse
Affiliation(s)
- Jiao Wu
- Center for Bio-Nano-Chips and Diagnostics in Translational Medicine (CBD), School of Biomedical Engineering, Med-X Research Institute and Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiang Wei
- Center for Bio-Nano-Chips and Diagnostics in Translational Medicine (CBD), School of Biomedical Engineering, Med-X Research Institute and Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jinrui Gan
- Department of Chemistry, Institute of Biomedical Sciences and State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Lin Huang
- Center for Bio-Nano-Chips and Diagnostics in Translational Medicine (CBD), School of Biomedical Engineering, Med-X Research Institute and Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ting Shen
- NanoLite Systems, Austin, TX 78795, USA
| | - Jiatao Lou
- Center for Bio-Nano-Chips and Diagnostics in Translational Medicine (CBD), School of Biomedical Engineering, Med-X Research Institute and Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Baohong Liu
- Department of Chemistry, Institute of Biomedical Sciences and State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - John X.J. Zhang
- Thayer School of Engineering, Dartmouth College, NH 03755, USA
| | - Kun Qian
- Center for Bio-Nano-Chips and Diagnostics in Translational Medicine (CBD), School of Biomedical Engineering, Med-X Research Institute and Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
14
|
Diamond nanowires: a novel platform for electrochemistry and matrix-free mass spectrometry. SENSORS 2015; 15:12573-93. [PMID: 26024422 PMCID: PMC4507696 DOI: 10.3390/s150612573] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 11/17/2022]
Abstract
Over the last decades, carbon-based nanostructures have generated a huge interest from both fundamental and technological viewpoints owing to their physicochemical characteristics, markedly different from their corresponding bulk states. Among these nanostructured materials, carbon nanotubes (CNTs), and more recently graphene and its derivatives, hold a central position. The large amount of work devoted to these materials is driven not only by their unique mechanical and electrical properties, but also by the advances made in synthetic methods to produce these materials in large quantities with reasonably controllable morphologies. While much less studied than CNTs and graphene, diamond nanowires, the diamond analogue of CNTs, hold promise for several important applications. Diamond nanowires display several advantages such as chemical inertness, high mechanical strength, high thermal and electrical conductivity, together with proven biocompatibility and existence of various strategies to functionalize their surface. The unique physicochemical properties of diamond nanowires have generated wide interest for their use as fillers in nanocomposites, as light detectors and emitters, as substrates for nanoelectronic devices, as tips for scanning probe microscopy as well as for sensing applications. In the past few years, studies on boron-doped diamond nanowires (BDD NWs) focused on increasing their electrochemical active surface area to achieve higher sensitivity and selectivity compared to planar diamond interfaces. The first part of the present review article will cover the promising applications of BDD NWS for label-free sensing. Then, the potential use of diamond nanowires as inorganic substrates for matrix-free laser desorption/ionization mass spectrometry, a powerful label-free approach for quantification and identification of small compounds, will be discussed.
Collapse
|
15
|
Cho YT, Su H, Wu WJ, Wu DC, Hou MF, Kuo CH, Shiea J. Biomarker Characterization by MALDI-TOF/MS. Adv Clin Chem 2015; 69:209-54. [PMID: 25934363 DOI: 10.1016/bs.acc.2015.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mass spectrometric techniques frequently used in clinical diagnosis, such as gas chromatography-mass spectrometry, liquid chromatography-mass spectrometry, ambient ionization mass spectrometry, and matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF/MS), are discussed. Due to its ability to rapidly detect large biomolecules in trace amounts, MALDI-TOF/MS is an ideal tool for characterizing disease biomarkers in biologic samples. Clinical applications of MS for the identification and characterization of microorganisms, DNA fragments, tissues, and biofluids are introduced. Approaches for using MALDI-TOF/MS to detect various disease biomarkers including peptides, proteins, and lipids in biological fluids are further discussed. Finally, various sample pretreatment methods which improve the detection efficiency of disease biomarkers are introduced.
Collapse
Affiliation(s)
- Yi-Tzu Cho
- Department of Cosmetic Applications and Management, Yuh-Ing Junior College of Health Care & Management, Kaohsiung, Taiwan
| | - Hung Su
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wen-Jeng Wu
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Feng Hou
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chao-Hung Kuo
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jentaie Shiea
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan; Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
16
|
Colaianni L, Kung SC, Taggart DK, Picca RA, Greaves J, Penner RM, Cioffi N. Reduction of spectral interferences using ultraclean gold nanowire arrays in the LDI-MS analysis of a model peptide. Anal Bioanal Chem 2014; 406:4571-83. [DOI: 10.1007/s00216-014-7876-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 04/14/2014] [Accepted: 05/05/2014] [Indexed: 01/01/2023]
|
17
|
Lei C, Qian K, Noonan O, Nouwens A, Yu C. Applications of nanomaterials in mass spectrometry analysis. NANOSCALE 2013; 5:12033-12042. [PMID: 24162102 DOI: 10.1039/c3nr04194h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mass spectrometry (MS) based analyses have received intense research interest in a series of rapidly developing disciplines. Although current MS techniques have enjoyed great successes, several key challenges still remain in practical applications, especially for the detection of biomolecules in biological systems. The use of nanomaterials in MS based analysis provides a promising approach due to their unique physical and chemical properties. In this review, nanomaterials with different compositions and nanostructures employed in MS applications are summarised and classified by their functions. Such an integrated and wide reaching review will provide a comprehensive handbook to researchers with various backgrounds working in this exciting interdisciplinary area.
Collapse
Affiliation(s)
- Chang Lei
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | | | |
Collapse
|
18
|
Chiu WC, Huang CC. Combining Fibrinogen-Conjugated Gold Nanoparticles with a Cellulose Membrane for the Mass Spectrometry-Based Detection of Fibrinolytic-Related Proteins. Anal Chem 2013; 85:6922-9. [DOI: 10.1021/ac4013418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | - Chih-Ching Huang
- School of Pharmacy,
College of
Pharmacy, Kaohsiung Medical University,
Kaohsiung 80708, Taiwan
| |
Collapse
|
19
|
Liu YC, Chang HT, Chiang CK, Huang CC. Pulsed-laser desorption/ionization of clusters from biofunctional gold nanoparticles: implications for protein detections. ACS APPLIED MATERIALS & INTERFACES 2012; 4:5241-5248. [PMID: 22998761 DOI: 10.1021/am3011934] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this paper, we describe a pulsed-laser desorption/ionization mass spectrometry (LDI-MS) approach for the detection of proteins with femtomolar sensitivity through the analysis of gold (Au) clusters desorbed from aptamer-modified gold nanoparticles (Apt-AuNPs) on a nitrocellulose membrane (NCM). After the target protein (thrombin) was selectively captured by the surface-bound 29-mer thrombin-binding aptamer (TBA(29)), the thrombin/TBA(29)-AuNP complexes were concentrated and deposited onto the NCM to form a highly efficient background-free surface-assisted LDI substrate. Under pulsed laser irradiation (355 nm), the binding of thrombin decreased the desorption and/or ionization efficiencies of the Au atoms from the AuNP surfaces. The resulting decreases in the intensities of the signals for Au clusters in the mass spectra provided a highly amplified target-labeling indicator for the targeted protein. Under optimized conditions, this probe was highly sensitive (limit of detection: ca. 50 fM) and selective (by at least 1000-fold over other proteins) toward thrombin; it also improved reproducibility (<5%) of ion production by presenting a more-homogeneous substrate surface, thereby enabling LDI-based measurements for the accurate and precise quantification of thrombin in human serum. This novel LDI-MS approach allows high-speed analyses of low-abundance thrombin with ultrahigh sensitivity; decorating the AuNP surfaces with other aptamers also allowed amplification of other biological signals.
Collapse
Affiliation(s)
- Yin-Chun Liu
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | | | | | | |
Collapse
|
20
|
Thermally annealed gold nanoparticles for surface-assisted laser desorption ionisation–mass spectrometry of low molecular weight analytes. Anal Bioanal Chem 2012; 404:1703-11. [DOI: 10.1007/s00216-012-6243-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/19/2012] [Accepted: 07/02/2012] [Indexed: 10/28/2022]
|
21
|
Gold nanomaterials as a new tool for bioanalytical applications of laser desorption ionization mass spectrometry. Anal Bioanal Chem 2011; 402:601-23. [DOI: 10.1007/s00216-011-5120-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/13/2011] [Accepted: 05/17/2011] [Indexed: 10/18/2022]
|