1
|
Liu X, Ouyang Q, Yao X, Zhang Y. A facile nanopattern modification of silk fibroin electrospun scaffold and the corresponding impact on cell proliferation and osteogenesis. Regen Biomater 2024; 11:rbae117. [PMID: 39575301 PMCID: PMC11580685 DOI: 10.1093/rb/rbae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 09/07/2024] [Indexed: 11/24/2024] Open
Abstract
As a well-known natural protein biomaterial, silk fibroin (SF) has shown broad application prospects in typical biomedical fields. However, the mostly used SF from Bombyx mori silkworm lacks specific cell adhesion sites and other bioactive peptide sequences, and there is still significant room for further improvement of their biological functions. Therefore, it is crucial to develop a facile and effective modification strategy for this widely researched biomaterial. In this study, the SF electrospun scaffold has been chosen as a typical SF biomaterial, and air plasma etching has been adopted as a facile nanopattern modification strategy to promote its biological functions. Results demonstrated that the plasma etching could feasibly and effectively create nano-island-like patterns on the complex surface of SF scaffolds, and the detailed nanopattern features could be easily regulated by adjusting the etching time. In addition, the mesenchymal stem cell responses have illustrated that the nanopattern modification could significantly regulate corresponding cell behaviors. Compared with the non-etched scaffold, the 10 min-etched scaffolds (10E scaffold) significantly promoted stem cell proliferation and osteogenic differentiation. Moreover, 10E scaffold has also been confirmed to effectively accelerate vascularization and ectopic osteogenesis in vivo using a rat subcutaneous implantation model. However, the mentioned promoting effects would be weakened or even counteracted with the increase of etching time. In conclusion, this facile modification strategy demonstrated great application potential for promoting cell proliferation and differentiation. Thus, it provided useful guidance to develop excellent SF-based scaffolds suitable for bone and other tissue engineering.
Collapse
Affiliation(s)
- Xiaojiao Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China
| | - Qinjun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
2
|
Liu YC, Chen P, Chang R, Liu X, Jhang JW, Enkhbat M, Chen S, Wang H, Deng C, Wang PY. Artificial tumor matrices and bioengineered tools for tumoroid generation. Biofabrication 2024; 16:022004. [PMID: 38306665 DOI: 10.1088/1758-5090/ad2534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
The tumor microenvironment (TME) is critical for tumor growth and metastasis. The TME contains cancer-associated cells, tumor matrix, and tumor secretory factors. The fabrication of artificial tumors, so-called tumoroids, is of great significance for the understanding of tumorigenesis and clinical cancer therapy. The assembly of multiple tumor cells and matrix components through interdisciplinary techniques is necessary for the preparation of various tumoroids. This article discusses current methods for constructing tumoroids (tumor tissue slices and tumor cell co-culture) for pre-clinical use. This article focuses on the artificial matrix materials (natural and synthetic materials) and biofabrication techniques (cell assembly, bioengineered tools, bioprinting, and microfluidic devices) used in tumoroids. This article also points out the shortcomings of current tumoroids and potential solutions. This article aims to promotes the next-generation tumoroids and the potential of them in basic research and clinical application.
Collapse
Affiliation(s)
- Yung-Chiang Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Ping Chen
- Cancer Centre, Faculty of Health Sciences, MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, People's Republic of China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Ray Chang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Xingjian Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Jhe-Wei Jhang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Myagmartsend Enkhbat
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Shan Chen
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Hongxia Wang
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chuxia Deng
- Cancer Centre, Faculty of Health Sciences, MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, People's Republic of China
| | - Peng-Yuan Wang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| |
Collapse
|
3
|
Ribeiro S, Pugliese E, Korntner SH, Fernandes EM, Gomes ME, Reis RL, O'Riordan A, Bayon Y, Zeugolis DI. Assessing the combined effect of surface topography and substrate rigidity in human bone marrow stem cell cultures. Eng Life Sci 2022; 22:619-633. [PMID: 36247829 PMCID: PMC9550738 DOI: 10.1002/elsc.202200029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/11/2022] Open
Abstract
The combined effect of surface topography and substrate rigidity in stem cell cultures is still under-investigated, especially when biodegradable polymers are used. Herein, we assessed human bone marrow stem cell response on aliphatic polyester substrates as a function of anisotropic grooved topography and rigidity (7 and 12 kPa). Planar tissue culture plastic (TCP, 3 GPa) and aliphatic polyester substrates were used as controls. Cell morphology analysis revealed that grooved substrates caused nuclei orientation/alignment in the direction of the grooves. After 21 days in osteogenic and chondrogenic media, the 3 GPa TCP and the grooved 12 kPa substrate induced significantly higher calcium deposition and alkaline phosphatase (ALP) activity and glycosaminoglycan (GAG) deposition, respectively, than the other groups. After 14 days in tenogenic media, the 3 GPa TCP upregulated four and downregulated four genes; the planar 7 kPa substrate upregulated seven genes and downregulated one gene; and the grooved 12 kPa substrate upregulated seven genes and downregulated one gene. After 21 days in adipogenic media, the softest (7 kPa) substrates induced significantly higher oil droplet deposition than the other substrates and the grooved substrate induced significantly higher droplet deposition than the planar. Our data pave the way for more rational design of bioinspired constructs.
Collapse
Affiliation(s)
- Sofia Ribeiro
- MedtronicSofradim ProductionTrevouxFrance
- RegenerativeModular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM)National University of Ireland Galway (NUI Galway)GalwayIreland
| | - Eugenia Pugliese
- RegenerativeModular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM)National University of Ireland Galway (NUI Galway)GalwayIreland
| | - Stefanie H. Korntner
- RegenerativeModular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM)National University of Ireland Galway (NUI Galway)GalwayIreland
| | - Emanuel M. Fernandes
- 3B's Research GroupI3Bs – Research Institute on BiomaterialsBiodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAveParkParque de Ciência e TecnologiaZona Industrial da GandraBarcoGuimarãesPortugal
- ICVS/3B's – PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Manuela E. Gomes
- 3B's Research GroupI3Bs – Research Institute on BiomaterialsBiodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAveParkParque de Ciência e TecnologiaZona Industrial da GandraBarcoGuimarãesPortugal
- ICVS/3B's – PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Rui L. Reis
- 3B's Research GroupI3Bs – Research Institute on BiomaterialsBiodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAveParkParque de Ciência e TecnologiaZona Industrial da GandraBarcoGuimarãesPortugal
- ICVS/3B's – PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | | | - Yves Bayon
- MedtronicSofradim ProductionTrevouxFrance
| | - Dimitrios I. Zeugolis
- RegenerativeModular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM)National University of Ireland Galway (NUI Galway)GalwayIreland
- RegenerativeModular & Developmental Engineering Laboratory (REMODEL)Charles Institute of DermatologyConway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials EngineeringUniversity College Dublin (UCD)DublinIreland
| |
Collapse
|
4
|
Naranda J, Bračič M, Vogrin M, Maver U, Trojner T. Practical Use of Quartz Crystal Microbalance Monitoring in Cartilage Tissue Engineering. J Funct Biomater 2022; 13:jfb13040159. [PMID: 36278628 PMCID: PMC9590066 DOI: 10.3390/jfb13040159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 11/29/2022] Open
Abstract
Quartz crystal microbalance (QCM) is a real-time, nanogram-accurate technique for analyzing various processes on biomaterial surfaces. QCM has proven to be an excellent tool in tissue engineering as it can monitor key parameters in developing cellular scaffolds. This review focuses on the use of QCM in the tissue engineering of cartilage. It begins with a brief discussion of biomaterials and the current state of the art in scaffold development for cartilage tissue engineering, followed by a summary of the potential uses of QCM in cartilage tissue engineering. This includes monitoring interactions with extracellular matrix components, adsorption of proteins onto biomaterials, and biomaterial–cell interactions. In the last part of the review, the material selection problem in tissue engineering is highlighted, emphasizing the importance of surface nanotopography, the role of nanofilms, and utilization of QCM as a “screening” tool to improve the material selection process. A step-by-step process for scaffold design is proposed, as well as the fabrication of thin nanofilms in a layer-by-layer manner using QCM. Finally, future trends of QCM application as a “screening” method for 3D printing of cellular scaffolds are envisioned.
Collapse
Affiliation(s)
- Jakob Naranda
- Department of Orthopaedics, University Medical Centre Maribor, SI-2000 Maribor, Slovenia
- Department of Orthopaedics, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
- Correspondence: (J.N.); (M.B.); Tel.: +386-2-321-1541 (J.N.); +386-2-220-7929 (M.B.)
| | - Matej Bračič
- Laboratory for Characterisation and Processing of Polymers (LCPP), Faculty of Mechanical Engineering, University of Maribor, SI-2000 Maribor, Slovenia
- Correspondence: (J.N.); (M.B.); Tel.: +386-2-321-1541 (J.N.); +386-2-220-7929 (M.B.)
| | - Matjaž Vogrin
- Department of Orthopaedics, University Medical Centre Maribor, SI-2000 Maribor, Slovenia
- Department of Orthopaedics, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
| | - Uroš Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
- Department of Pharmacology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
| | - Teodor Trojner
- Department of Orthopaedics, University Medical Centre Maribor, SI-2000 Maribor, Slovenia
| |
Collapse
|
5
|
Suematsu Y, Tsai YA, Takeoka S, Franz CM, Arai S, Fujie T. Ultra-thin, transparent, porous substrates as 3D culture scaffolds for engineering ASC spheroids for high-magnification imaging. J Mater Chem B 2021; 8:6999-7008. [PMID: 32627797 DOI: 10.1039/d0tb00723d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Three-dimensional (3D) culture is expected to reproduce biological tissues more representatively than monolayer culture, which is important for in vitro research such as drug screening. Recently, various cell culture substrates for spheroid engineering have been developed based on the prevention of cell adhesion. However, despite the expanded usability these substrates provide, they remain limited in terms of optical microscopy imaging of spheroids with high magnification lenses. This is because almost all substrates generated by nanoimprinting hamper the light passing through them owing to their low optical transparency caused by the thickness and surface structure. In this study, we achieved the preparation of spheroids from adipose-tissue derived stem cells (ASCs) on free-standing porous polymeric ultrathin films ("porous nanosheets") consisting of poly(d,l-lactic acid) (PDLLA) with thickness of 120 nm and average pore diameter of 4 μm. ASCs migrated on the porous nanosheet, leading to the spontaneous organization of spheroids anchored via a cell monolayer. The porous nanosheet also provided more than twice the optical transparency in confocal and holographic microscopy observation compared to conventional nanoimprinted substrates for 3D cell culture (NanoCulture Dish). The internal structure of the organized spheroids could be clearly observed with 40× magnification. In addition, the engineered spheroids showed bioactivities indicated by mRNA expression of fibroblast growth factor (FGF-2) and vascular endothelial growth factor (VEGF). Thus, porous nanosheets offer a unique cell culture substrate, not only for engineering 3D cellular organization from stem cells, but also for imaging detailed structure using light microscopy.
Collapse
Affiliation(s)
- Yoshitaka Suematsu
- Graduate School of Advanced Science and Engineering, Waseda University, TWIns, 2-2, Shinjuku-ku, Tokyo 162-8480, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Taha EA, Sogawa C, Okusha Y, Kawai H, Oo MW, Elseoudi A, Lu Y, Nagatsuka H, Kubota S, Satoh A, Okamoto K, Eguchi T. Knockout of MMP3 Weakens Solid Tumor Organoids and Cancer Extracellular Vesicles. Cancers (Basel) 2020; 12:E1260. [PMID: 32429403 PMCID: PMC7281240 DOI: 10.3390/cancers12051260] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
The tumor organoid (tumoroid) model in three-dimensional (3D) culture systems has been developed to reflect more closely the in vivo tumors than 2D-cultured tumor cells. Notably, extracellular vesicles (EVs) are efficiently collectible from the culture supernatant of gel-free tumoroids. Matrix metalloproteinase (MMP) 3 is a multi-functional factor playing crucial roles in tumor progression. However, roles of MMP3 within tumor growth and EVs have not unveiled. Here, we investigated the protumorigenic roles of MMP3 on integrities of tumoroids and EVs. We generated MMP3-knockout (KO) cells using the CRISPR/Cas9 system from rapidly metastatic LuM1 tumor cells. Moreover, we established fluorescent cell lines with palmitoylation signal-fused fluorescent proteins (tdTomato and enhanced GFP). Then we confirmed the exchange of EVs between cellular populations and tumoroids. LuM1-tumoroids released large EVs (200-1000 nm) and small EVs (50-200 nm) while the knockout of MMP3 resulted in the additional release of broken EVs from tumoroids. The loss of MMP3 led to a significant reduction in tumoroid size and the development of the necrotic area within tumoroids. MMP3 and CD9 (a category-1 EV marker tetraspanin protein) were significantly down-regulated in MMP3-KO cells and their EV fraction. Moreover, CD63, another member of the tetraspanin family, was significantly reduced only in the EVs fractions of the MMP3-KO cells compared to their counterpart. These weakened phenotypes of MMP3-KO were markedly rescued by the addition of MMP3-rich EVs or conditioned medium (CM) collected from LuM1-tumoroids, which caused a dramatic rise in the expression of MMP3, CD9, and Ki-67 (a marker of proliferating cells) in the MMP3-null/CD9-low tumoroids. Notably, MMP3 enriched in tumoroids-derived EVs and CM deeply penetrated recipient MMP3-KO tumoroids, resulting in a remarkable enlargement of solid tumoroids, while MMP3-null EVs did not. These data demonstrate that EVs can mediate molecular transfer of MMP3, resulting in increasing the proliferation and tumorigenesis, indicating crucial roles of MMP3 in tumor progression.
Collapse
Affiliation(s)
- Eman A. Taha
- Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8525, Japan; (E.A.T.); (C.S.); (Y.O.); (Y.L.); (K.O.)
- Department of Medical Bioengineering, Okayama University Graduate School of Natural Science and Technology, Okayama 700-8530, Japan;
- Department of Biochemistry, Ain Shams University Faculty of Science, Cairo 11566, Egypt
| | - Chiharu Sogawa
- Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8525, Japan; (E.A.T.); (C.S.); (Y.O.); (Y.L.); (K.O.)
| | - Yuka Okusha
- Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8525, Japan; (E.A.T.); (C.S.); (Y.O.); (Y.L.); (K.O.)
- Division of Molecular and Cellular Biology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan; (H.K.); (M.W.O.); (H.N.)
| | - May Wathone Oo
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan; (H.K.); (M.W.O.); (H.N.)
| | - Abdellatif Elseoudi
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan; (A.E.); (S.K.)
- Centre Hospitalier Universitaire Sainte-Justine Hospital Research Center, University of Montreal, Québec, QC H3T 1C5, Canada
| | - Yanyin Lu
- Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8525, Japan; (E.A.T.); (C.S.); (Y.O.); (Y.L.); (K.O.)
- Department of Dental Anesthesiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan; (H.K.); (M.W.O.); (H.N.)
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan; (A.E.); (S.K.)
| | - Ayano Satoh
- Department of Medical Bioengineering, Okayama University Graduate School of Natural Science and Technology, Okayama 700-8530, Japan;
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8525, Japan; (E.A.T.); (C.S.); (Y.O.); (Y.L.); (K.O.)
| | - Takanori Eguchi
- Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8525, Japan; (E.A.T.); (C.S.); (Y.O.); (Y.L.); (K.O.)
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan
| |
Collapse
|
7
|
Rosado-Galindo H, Domenech M. Polystyrene Topography Sticker Array for Cell-Based Assays. RECENT PROGRESS IN MATERIALS 2020; 2:10.21926/rpm.2002013. [PMID: 33693439 PMCID: PMC7943041 DOI: 10.21926/rpm.2002013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cells can respond to different topographical cues in their natural microenvironment. Hence, scientists have employed microfabrication techniques and materials to generate culture substrates containing topographies for cell-based assays. However, one of the limitations of custom topographical platforms is the lack of adoption by the broad research community. These techniques and materials have high costs, require high technical expertise, and can leach components that may introduce artifacts. In this study, we developed an array of culture surfaces on polystyrene using razor printing and sanding methods to examine the impact of microscale topographies on cell behavior. The proposed technology consists of culture substrates of defined roughness, depth, and curvature on polystyrene films bound to the bottom of a culture well using double-sided medical-grade tape. Human monocytes and adult mesenchymal stem cells (hMSCs) were used as test beds to demonstrate the applicability of the array for cell-based assays. An increase in cell elongation and Arg-1 expression was detected in macrophages cultured in grooves and on rough substrates as compared to flat surfaces. Also, substrates with enhanced roughness stimulated the proliferation of hMSCs. This effect correlated with the secretion of proteins involved in cell proliferation and the downregulation of those associated with cell differentiation. Our results showed that the polystyrene topography sticker array supports cellular changes guided by microscale surface roughness and geometries. Consequently, microscale surface topographies on polished and razor-printed polystyrene films could leverage the endogenous mechanisms of cells to stimulate cellular changes at the functional level for cell-based assays.
Collapse
Affiliation(s)
- Heizel Rosado-Galindo
- Mayagüez Campus-Bioengineering Program, University of Puerto Rico, Mayagüez, Puerto Rico
| | - Maribella Domenech
- Mayagüez Campus-Department of Chemical Engineering, University of Puerto Rico, Mayagüez, Puerto Rico
| |
Collapse
|
8
|
Liu Z, Tang M, Zhao J, Chai R, Kang J. Looking into the Future: Toward Advanced 3D Biomaterials for Stem-Cell-Based Regenerative Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705388. [PMID: 29450919 DOI: 10.1002/adma.201705388] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/26/2017] [Indexed: 05/23/2023]
Abstract
Stem-cell-based therapies have the potential to provide novel solutions for the treatment of a variety of diseases, but the main obstacles to such therapies lie in the uncontrolled differentiation and functional engraftment of implanted tissues. The physicochemical microenvironment controls the self-renewal and differentiation of stem cells, and the key step in mimicking the stem cell microenvironment is to construct a more physiologically relevant 3D culture system. Material-based 3D assemblies of stem cells facilitate the cellular interactions that promote morphogenesis and tissue organization in a similar manner to that which occurs during embryogenesis. Both natural and artificial materials can be used to create 3D scaffolds, and synthetic organic and inorganic porous materials are the two main kinds of artificial materials. Nanotechnology provides new opportunities to design novel advanced materials with special physicochemical properties for 3D stem cell culture and transplantation. Herein, the advances and advantages of 3D scaffold materials, especially with respect to stem-cell-based therapies, are first outlined. Second, the stem cell biology in 3D scaffold materials is reviewed. Third, the progress and basic principles of developing 3D scaffold materials for clinical applications in tissue engineering and regenerative medicine are reviewed.
Collapse
Affiliation(s)
- Zhongmin Liu
- Department of Cardiovascular and Thoracic Surgery, Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
- Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 211189, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Jinping Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
- Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 211189, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
9
|
Koyama S, Arakawa H, Itoh M, Masuda N, Yano K, Kojima H, Ogihara T. Evaluation of the metabolic capability of primary human hepatocytes in three-dimensional cultures on microstructural plates. Biopharm Drug Dispos 2018; 39:187-195. [PMID: 29469947 DOI: 10.1002/bdd.2125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 01/08/2023]
Abstract
The NanoCulture Plate (NCP) is a novel microstructural plate designed as a base for the three-dimensional culture of cells/tissues. This study examined whether or not the metabolic capability of human primary hepatocytes is well maintained during culture on NCPs. The hepatocytes formed aggregates after seeding and their ATP content was well maintained during culture for 21 days. Expression of CYP1A2, 2B6, 2C9, 2C19, 2D6, 2E1 and 3A4 mRNAs was detected throughout the 21-day culture period. Addition of CYP substrate drugs (midazolam, diclofenac, lamotrigine and acetaminophen) resulted in the formation of multiple metabolites with a corresponding decrease in the amounts of the unchanged compounds. The inducers omeprazole, phenobarbital and rifampicin increased the levels of CYP1A2, 2B6 and 3A4 mRNAs by 110-fold, 12.5-fold and 5.4-fold, respectively, at day 2, compared with control human hepatocytes. CYP activities were also increased at 2 days after inducer treatment (CYP1A2, 2.2-fold; CYP2B6, 20.6-fold; CYP3A4, 3.3-fold). The results indicate that the hepatocyte spheroids on NCP have detectable and inducible metabolic abilities during the 7-day culture period.
Collapse
Affiliation(s)
- Satoshi Koyama
- Laboratory of Biopharmaceutics, Faculty of Pharmacy, Taksaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan
| | - Hiroshi Arakawa
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Manabu Itoh
- JSR Life Sciences, 25 Miyukigaoka, Tsukuba, Ibaraki, 305-0841, Japan
| | - Norio Masuda
- JSR Life Sciences, 25 Miyukigaoka, Tsukuba, Ibaraki, 305-0841, Japan
| | - Kentaro Yano
- Laboratory of Biopharmaceutics, Faculty of Pharmacy, Taksaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan
| | - Hajime Kojima
- Division of Risk Assessment, Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo, 158-8501, Japan
| | - Takuo Ogihara
- Laboratory of Biopharmaceutics, Faculty of Pharmacy, Taksaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan.,Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan
| |
Collapse
|
10
|
Zhang J, Yan Y, Miao P, Cai J. Fabrication of gold-coated PDMS surfaces with arrayed triangular micro/nanopyramids for use as SERS substrates. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:2271-2282. [PMID: 29181284 PMCID: PMC5687003 DOI: 10.3762/bjnano.8.227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/28/2017] [Indexed: 05/09/2023]
Abstract
Using the tip-based continuous indentation process, arrays of three-dimensional pyramidal cavities have been successfully machined on a copper template and the structures were successfully transferred to a polydimethylsiloxane (PDMS) surface using a reverse nanoimprinting approach. The structured PDMS surface is coated with a thin Au film, and the final substrate is demonstrated as a surface-enhanced Raman spectroscopy (SERS) substrate. Rhodamine 6G (R6G) was used as a probe molecule in the present study to confirm the SERS measurements. Arrays of micro/nanostructures of different dimensions were formed by the overlap of pyramidal cavities with different adjacent distances using the tip-based continuous indentation process. The effects of the reverse nanoimprinting process and coating process on the final topography of the structures are studied. The experimental results show that the Raman intensity of the Au-film-coated PDMS substrate is influenced by the topography of the micro/nanostructures and by the thickness of the Au film. The Raman intensity of 1362 cm-1 R6G peak on the structured Au-film-coated PDMS substrate is about 8 times higher than the SERS tests on a commercial substrate (Q-SERS). A SERS enhancement factor ranging from 7.5 × 105 to 6 × 106 was achieved using the structured Au-film-coated PDMS surface, and it was demonstrated that the method proposed in this paper is reliable, replicable, homogeneous and low-cost for the fabrication of SERS substrates.
Collapse
Affiliation(s)
- Jingran Zhang
- The State Key Laboratory of Robotics and Systems, Robotics Institute, Harbin Institute of Technology, Harbin, Heilongjiang 150080, P.R. China
- Center for Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P.R. China
| | - Yongda Yan
- The State Key Laboratory of Robotics and Systems, Robotics Institute, Harbin Institute of Technology, Harbin, Heilongjiang 150080, P.R. China
- Center for Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P.R. China
| | - Peng Miao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P.R. China
| | - Jianxiong Cai
- The State Key Laboratory of Robotics and Systems, Robotics Institute, Harbin Institute of Technology, Harbin, Heilongjiang 150080, P.R. China
- Center for Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
11
|
A Novel High-Throughput 3D Screening System for EMT Inhibitors: A Pilot Screening Discovered the EMT Inhibitory Activity of CDK2 Inhibitor SU9516. PLoS One 2016; 11:e0162394. [PMID: 27622654 PMCID: PMC5021355 DOI: 10.1371/journal.pone.0162394] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/22/2016] [Indexed: 11/21/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial pathological event in cancer, particularly in tumor cell budding and metastasis. Therefore, control of EMT can represent a novel therapeutic strategy in cancer. Here, we introduce an innovative three-dimensional (3D) high-throughput screening (HTS) system that leads to an identification of EMT inhibitors. For the establishment of the novel 3D-HTS system, we chose NanoCulture Plates (NCP) that provided a gel-free micro-patterned scaffold for cells and were independent of other spheroid formation systems using soft-agar. In the NCP-based 3D cell culture system, A549 lung cancer cells migrated, gathered, and then formed multiple spheroids within 7 days. Live cell imaging experiments showed that an established EMT-inducer TGF-β promoted peripheral cells around the core of spheroids to acquire mesenchymal spindle shapes, loss of intercellular adhesion, and migration from the spheroids. Along with such morphological change, EMT-related gene expression signatures were altered, particularly alteration of mRNA levels of ECAD/CDH1, NCAD/CDH2, VIM and ZEB1/TCF8. These EMT-related phenotypic changes were blocked by SB431542, a TGF-βreceptor I (TGFβR1) inhibitor. Inside of the spheroids were highly hypoxic; in contrast, spheroid-derived peripheral migrating cells were normoxic, revealed by visualization and quantification using Hypoxia Probe. Thus, TGF-β-triggered EMT caused spheroid hypoplasia and loss of hypoxia. Spheroid EMT inhibitory (SEMTIN) activity of SB431542 was calculated from fluorescence intensities of the Hypoxia Probe, and then was utilized in a drug screening of EMT-inhibitory small molecule compounds. In a pilot screening, 9 of 1,330 compounds were above the thresholds of the SEMTIN activity and cell viability. Finally, two compounds SB-525334 and SU9516 showed SEMTIN activities in a dose dependent manner. SB-525334 was a known TGFβR1 inhibitor. SU9516 was a cyclin-dependent kinase 2 (CDK2) inhibitor, which we showed also had an EMT-inhibitory activity. The half maximal inhibitory concentration (IC50) of SB-525334 and SU9516 were 0.31 μM and 1.21 μM, respectively, while IC50 of SB431542 was 2.38 μM. Taken together, it was shown that this 3D NCP-based HTS system was useful for screening of EMT-regulatory drugs.
Collapse
|
12
|
Zhang Y, Du X, Hu D, Zhang J, Zhou Y, Min G, Lang M. Combined Chemical Groups and Topographical Nanopattern on the Poly(ε-Caprolactone) Surface for Regulating Human Foreskin Fibroblasts Behavior. ACS APPLIED MATERIALS & INTERFACES 2016; 8:7720-7728. [PMID: 26950754 DOI: 10.1021/acsami.6b01361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Surface chemistry and substrate topography could contribute significantly to providing a biochemical and topographical cues for governing the fate of cells on the cell-material interface. However, the synergies between these two properties have not been exploited extensively for biomaterial design. Herein, we achieved spatial-controlled patterning of chemical groups on the poly(ε-caprolactone) (PCL) surface by elegant UV-nanoimprint lithography (UN-NIL). The introduction of chemical groups on the PCL surface was developed by our newly 6-benzyloxycarbonylmethyl-ε-caprolactone (BCL) monomer, which not only solved the lack of functional groups along the PCL chain but also retained the original favorable properties of PCL materials. The synergetic effect of the chemical groups and nanopatterns on the human foreskin fibroblasts (HFFs) behaviors was evaluated in detail. The results revealed that the patterned functional PCL surfaces could induce enhanced cell adhesion and proliferation, further trigger changes in HFFs morphology, orientation and collagen secretion. Taken together, this study provided a method for straightforward fabrication of reactive PCL surfaces with topographic patterns by one-step process, and they would facilitate PCL as potential candidate for cell cultivation and tissue engineering.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology , No 130, Meilong Road, Shanghai, 200237, China
- Shanghai Nanotechnology Promotion Center , Shanghai, 200237, China
| | - Xiaolin Du
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology , No 130, Meilong Road, Shanghai, 200237, China
| | - Dan Hu
- The State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology , Shanghai, 200237, China
| | - Jing Zhang
- Shanghai Nanotechnology Promotion Center , Shanghai, 200237, China
| | - Yan Zhou
- The State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology , Shanghai, 200237, China
| | - Guoquan Min
- Shanghai Nanotechnology Promotion Center , Shanghai, 200237, China
| | - Meidong Lang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology , No 130, Meilong Road, Shanghai, 200237, China
| |
Collapse
|
13
|
High aspect ratio nanoimprinted grooves of poly(lactic-co-glycolic acid) control the length and direction of retraction fibers during fibroblast cell division. Biointerphases 2015; 10:041008. [PMID: 26652706 DOI: 10.1116/1.4936589] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Retraction fibers (RFs) determine orientation of the cell division axis and guide the spreading of daughter cells. Long and unidirectional RFs, which are especially apparent during mitosis of cells in three-dimensional (3D) environments, enable improved control over cell fate, following division. However, 3D gel environments lack the cues necessary for predetermining the orientation of RFs to direct tissue architecture. While patterning of focal adhesion regions by microcontact printing can determine orientation of the RFs through enhancing focal adhesion numbers along particular directions, the RFs remain short due to the two-dimensional culture environment. Herein, the authors demonstrate that nanoimprinted grooves of polylactic acid glycolic acid (PLGA) with a high aspect ratio (A.R. of 2.0) can provide the cues necessary to control the direction of RFs, as well as enable the maintenance of long and unidirectional RFs as observed within 3D cultures, while the same is not possible with PLGA grooves of lower A.R. (1.0 or lower). Based on enhanced levels of contact guidance of premitotic fibroblast protrusions at high A.R. grooves and deeper levels of focal adhesion due to filopodia extensions into these grooves, it is suggested that submicron (800 nm width) PLGA grooves with A.R. of 2 are capable of supporting mechanical forces from cell protrusions to a greater depth, thereby enabling the maintenance of the protrusions as long and unidirectional RFs during cell division. Given the scalability and versatility of nanoimprint techniques, the authors envision a platform for designing nanostructures to direct tissue regeneration and developmental biology.
Collapse
|
14
|
Ryan CNM, Fuller KP, Larrañaga A, Biggs M, Bayon Y, Sarasua JR, Pandit A, Zeugolis DI. An academic, clinical and industrial update on electrospun, additive manufactured and imprinted medical devices. Expert Rev Med Devices 2015; 12:601-12. [DOI: 10.1586/17434440.2015.1062364] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Lima M, Correlo V, Reis R. Micro/nano replication and 3D assembling techniques for scaffold fabrication. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:615-21. [DOI: 10.1016/j.msec.2014.05.064] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 05/19/2014] [Accepted: 05/30/2014] [Indexed: 10/25/2022]
|