1
|
Vu Thanh C, Gooding JJ, Kah M. Learning lessons from nano-medicine to improve the design and performances of nano-agrochemicals. Nat Commun 2025; 16:2306. [PMID: 40055366 PMCID: PMC11889108 DOI: 10.1038/s41467-025-57650-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 02/27/2025] [Indexed: 05/13/2025] Open
Abstract
Sharing concepts and knowledge between medical and agricultural fields can promote the development of improved nano-enabled technologies. A central idea behind drug delivery systems is that the active substances are encapsulated in nanoparticles (nano-medicines) to protect the drugs from premature degradation and allow them to be transported to the target site within the body. After three decades of development, nano-medicines are now used in many practical applications, including clinical oncology, infectious disease, cosmetics, and vaccines. Nano-agrochemicals are increasingly considered to tackle challenges associated with food production, sustainability and food security. Despite obvious differences between nano-medicines and nano-agrochemicals in terms of uptake mechanisms, target and environmental and economic constraints, the principles behind nanoparticle design share many similarities. This article hopes to share experiences and lessons learnt from nano-medicines that will help design more effective and safer nano-agrochemicals.
Collapse
Affiliation(s)
| | - J Justin Gooding
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia.
| | - Melanie Kah
- School of Environment, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
2
|
Zhang S, Wang H. Targeting the lung tumour stroma: harnessing nanoparticles for effective therapeutic interventions. J Drug Target 2025; 33:60-86. [PMID: 39356091 DOI: 10.1080/1061186x.2024.2410462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/27/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Lung cancer remains an influential global health concern, necessitating the development of innovative therapeutic strategies. The tumour stroma, which is known as tumour microenvironment (TME) has a central impact on tumour expansion and treatment resistance. The stroma of lung tumours consists of numerous cells and molecules that shape an environment for tumour expansion. This environment not only protects tumoral cells against immune system attacks but also enables tumour stroma to attenuate the action of antitumor drugs. This stroma consists of stromal cells like cancer-associated fibroblasts (CAFs), suppressive immune cells, and cytotoxic immune cells. Additionally, the presence of stem cells, endothelial cells and pericytes can facilitate tumour volume expansion. Nanoparticles are hopeful tools for targeted drug delivery because of their extraordinary properties and their capacity to devastate biological obstacles. This review article provides a comprehensive overview of contemporary advancements in targeting the lung tumour stroma using nanoparticles. Various nanoparticle-based approaches, including passive and active targeting, and stimuli-responsive systems, highlighting their potential to improve drug delivery efficiency. Additionally, the role of nanotechnology in modulating the tumour stroma by targeting key components such as immune cells, extracellular matrix (ECM), hypoxia, and suppressive elements in the lung tumour stroma.
Collapse
Affiliation(s)
- Shushu Zhang
- Cancer Center (Oncology) Department, the Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Hui Wang
- Cancer Center (Oncology) Department, the Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
3
|
Smart Nanocarriers as an Emerging Platform for Cancer Therapy: A Review. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010146. [PMID: 35011376 PMCID: PMC8746670 DOI: 10.3390/molecules27010146] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
Cancer is a group of disorders characterized by uncontrolled cell growth that affects around 11 million people each year globally. Nanocarrier-based systems are extensively used in cancer imaging, diagnostics as well as therapeutics; owing to their promising features and potential to augment therapeutic efficacy. The focal point of research remains to develop new-fangled smart nanocarriers that can selectively respond to cancer-specific conditions and deliver medications to target cells efficiently. Nanocarriers deliver loaded therapeutic cargos to the tumour site either in a passive or active mode, with the least drug elimination from the drug delivery systems. This review chiefly focuses on current advances allied to smart nanocarriers such as dendrimers, liposomes, mesoporous silica nanoparticles, quantum dots, micelles, superparamagnetic iron-oxide nanoparticles, gold nanoparticles and carbon nanotubes, to list a few. Exhaustive discussion on crucial topics like drug targeting, surface decorated smart-nanocarriers and stimuli-responsive cancer nanotherapeutics responding to temperature, enzyme, pH and redox stimuli have been covered.
Collapse
|
4
|
Bosetti R, Jones SL. Cost-effectiveness of nanomedicine: estimating the real size of nano-costs. Nanomedicine (Lond) 2019; 14:1367-1370. [PMID: 31169449 DOI: 10.2217/nnm-2019-0130] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Rita Bosetti
- Center for Outcomes Research, Houston Methodist, 6550 Fannin St, Houston, TX 77030, USA
| | - Stephen L Jones
- Center for Outcomes Research, Houston Methodist, 6550 Fannin St, Houston, TX 77030, USA
| |
Collapse
|
5
|
Ganipineni LP, Danhier F, Préat V. Drug delivery challenges and future of chemotherapeutic nanomedicine for glioblastoma treatment. J Control Release 2018; 281:42-57. [PMID: 29753958 DOI: 10.1016/j.jconrel.2018.05.008] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GBM) is one of the most aggressive and deadliest central nervous system tumors, and the current standard treatment is surgery followed by radiotherapy with concurrent chemotherapy. Nevertheless, the survival period is notably low. Although ample research has been performed to develop an effective therapeutic strategy for treating GBM, the success of extending patients' survival period and quality of life is limited. This review focuses on the strategies developed to address the challenges associated with drug delivery in GBM, particularly nanomedicine. The first part describes major obstacles to the development of effective GBM treatment strategies. The second part focuses on the conventional chemotherapeutic nanomedicine strategies, their limitations and the novel and advanced strategies of nanomedicine, which could be promising for GBM treatment. We also highlighted the prominence of nanomedicine clinical translation. The near future looks bright following the beginning of clinical translation of nanochemotherapy for GBM.
Collapse
Affiliation(s)
- Lakshmi Pallavi Ganipineni
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73 bte B1 73.12, 1200 Brussels, Belgium
| | - Fabienne Danhier
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73 bte B1 73.12, 1200 Brussels, Belgium
| | - Véronique Préat
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73 bte B1 73.12, 1200 Brussels, Belgium.
| |
Collapse
|
6
|
Bosetti R. Cost-effectiveness of nanomedicine: the path to a future successful and dominant market? Nanomedicine (Lond) 2016; 10:1851-3. [PMID: 26139120 DOI: 10.2217/nnm.15.74] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Rita Bosetti
- Biomechanics Research Unit, University of Liège, Chemin des Chevreuils 1 - BAT 52/3 - BE4000 Liège, Belgium
| |
Collapse
|
7
|
Pedrosa P, Vinhas R, Fernandes A, Baptista PV. Gold Nanotheranostics: Proof-of-Concept or Clinical Tool? NANOMATERIALS 2015; 5:1853-1879. [PMID: 28347100 PMCID: PMC5304792 DOI: 10.3390/nano5041853] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/04/2015] [Accepted: 10/27/2015] [Indexed: 12/31/2022]
Abstract
Nanoparticles have been making their way in biomedical applications and personalized medicine, allowing for the coupling of diagnostics and therapeutics into a single nanomaterial—nanotheranostics. Gold nanoparticles, in particular, have unique features that make them excellent nanomaterials for theranostics, enabling the integration of targeting, imaging and therapeutics in a single platform, with proven applicability in the management of heterogeneous diseases, such as cancer. In this review, we focus on gold nanoparticle-based theranostics at the lab bench, through pre-clinical and clinical stages. With few products facing clinical trials, much remains to be done to effectively assess the real benefits of nanotheranostics at the clinical level. Hence, we also discuss the efforts currently being made to translate nanotheranostics into the market, as well as their commercial impact.
Collapse
Affiliation(s)
- Pedro Pedrosa
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Campus Caparica, 2829-516 Caparica, Portugal.
| | - Raquel Vinhas
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Campus Caparica, 2829-516 Caparica, Portugal.
| | - Alexandra Fernandes
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Campus Caparica, 2829-516 Caparica, Portugal.
| | - Pedro V Baptista
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Campus Caparica, 2829-516 Caparica, Portugal.
| |
Collapse
|
8
|
Alibolandi M, Sadeghi F, Abnous K, Atyabi F, Ramezani M, Hadizadeh F. The chemotherapeutic potential of doxorubicin-loaded PEG-b-PLGA nanopolymersomes in mouse breast cancer model. Eur J Pharm Biopharm 2015; 94:521-31. [PMID: 26170161 DOI: 10.1016/j.ejpb.2015.07.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 12/31/2022]
Abstract
Vesicles of mPEG-PLGA block copolymer were developed to deliver a therapeutic quantity of doxorubicin (DOX) for breast cancer treatment. The DOX-loaded nanoparticles (NPs) were prepared by the pH-gradient method and then evaluated in terms of morphology, size, DOX encapsulation efficiency and in vitro drug release mechanism. The PEG-PLGA nanopolymersomes were 134±1.2nm spherical NPs with a narrow size distribution (PDI=0.121). DOX was entrapped in mPEG-PLGA nanopolymersomes with an encapsulation efficiency and a loading content of 91.25±4.27% and 7.3±0.34%, respectively. The DOX-loaded nanopolymersomes were found to be stable, demonstrating no significant change in particle size and encapsulation efficiency (EE%) during the 6-month storage period of the lyophilized powder at 4°C. The nanopolymersomes sustained the release of DOX. In cytotoxicity studies of 4T1 cell line samples, free DOX showed a higher cytotoxicity (IC50=1.76μg/mL) than did DOX-loaded nanopolymersomes (15.82μg/mL) in vitro. In order to evaluate the antitumor efficacy and biodistribution of DOX-loaded nanopolymersomes, murine breast tumors were established on the BALB/c mice, and in vivo studies were performed. The obtained results demonstrated that the prepared drug delivery system was highly effective against a murine breast cancer tumor model and successfully accumulated in the tumor site through an enhanced permeation and retention mechanism. In vivo studies also proved that DOX-loaded nanopolymersomes are stable in blood circulation and could be considered a promising and effective DOX delivery system for breast cancer treatment.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/pharmacokinetics
- Antibiotics, Antineoplastic/therapeutic use
- Antibiotics, Antineoplastic/toxicity
- Cell Line, Tumor
- Cell Survival/drug effects
- Doxorubicin/administration & dosage
- Doxorubicin/pharmacokinetics
- Doxorubicin/therapeutic use
- Doxorubicin/toxicity
- Drug Carriers/chemical synthesis
- Drug Carriers/chemistry
- Drug Compounding
- Drug Stability
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/pathology
- Mice, Inbred BALB C
- Microscopy, Electron, Transmission
- Nanoparticles/chemistry
- Particle Size
- Polyesters/chemical synthesis
- Polyesters/chemistry
- Polyethylene Glycols/chemical synthesis
- Polyethylene Glycols/chemistry
- Surface Properties
Collapse
Affiliation(s)
- Mona Alibolandi
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Sadeghi
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Atyabi
- Nanothechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanothechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Farzin Hadizadeh
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|